Normalized defining polynomial
\( x^{20} - 2 x^{19} + 6 x^{16} - 18 x^{15} + 17 x^{14} + 4 x^{13} + 25 x^{12} - 92 x^{11} + 92 x^{10} - 34 x^{9} + 44 x^{8} - 140 x^{7} + 188 x^{6} - 144 x^{5} + 88 x^{4} - 54 x^{3} + 27 x^{2} - 8 x + 1 \)
Invariants
Degree: | $20$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(267622853577068773376\)\(\medspace = 2^{20}\cdot 761^{5}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $10.50$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 761$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $10$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{4379139123} a^{19} - \frac{119017966}{4379139123} a^{18} + \frac{1685921074}{4379139123} a^{17} - \frac{2114361461}{4379139123} a^{16} + \frac{33058990}{1459713041} a^{15} + \frac{365282}{257596419} a^{14} + \frac{114632567}{257596419} a^{13} - \frac{973911976}{4379139123} a^{12} - \frac{1115738719}{4379139123} a^{11} + \frac{537527623}{1459713041} a^{10} - \frac{379823704}{1459713041} a^{9} + \frac{493709918}{1459713041} a^{8} + \frac{230256856}{1459713041} a^{7} - \frac{1268264551}{4379139123} a^{6} + \frac{160458095}{4379139123} a^{5} + \frac{746923456}{4379139123} a^{4} - \frac{934160479}{4379139123} a^{3} - \frac{270645920}{4379139123} a^{2} + \frac{754334224}{4379139123} a + \frac{1554696913}{4379139123}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{3778880}{270869} a^{19} + \frac{11227566}{270869} a^{18} - \frac{1330507}{270869} a^{17} - \frac{6019962}{270869} a^{16} - \frac{29575666}{270869} a^{15} + \frac{83845502}{270869} a^{14} - \frac{99234599}{270869} a^{13} - \frac{28701735}{270869} a^{12} - \frac{57842432}{270869} a^{11} + \frac{495643623}{270869} a^{10} - \frac{479848985}{270869} a^{9} + \frac{109683743}{270869} a^{8} - \frac{126499126}{270869} a^{7} + \frac{696261730}{270869} a^{6} - \frac{967858891}{270869} a^{5} + \frac{644490779}{270869} a^{4} - \frac{358982021}{270869} a^{3} + \frac{241607430}{270869} a^{2} - \frac{112651583}{270869} a + \frac{21204039}{270869} \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 99.9526828541 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$D_5\wr C_2$ (as 20T48):
A solvable group of order 200 |
The 14 conjugacy class representatives for $D_5\wr C_2$ |
Character table for $D_5\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 4.0.12176.1, 10.0.593019904.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 10 siblings: | data not computed |
Degree 20 siblings: | data not computed |
Degree 25 sibling: | data not computed |
Degree 40 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
761 | Data not computed |