Normalized defining polynomial
\( x^{20} - 6 x^{19} + 11 x^{18} + 8 x^{17} - 45 x^{16} - 100 x^{15} + 917 x^{14} - 2570 x^{13} + 3808 x^{12} - 2840 x^{11} + 591 x^{10} - 746 x^{9} + 5829 x^{8} - 12332 x^{7} + 9220 x^{6} + 11228 x^{5} - 23849 x^{4} - 2776 x^{3} + 32929 x^{2} - 25596 x + 6399 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2674553644040763237187428049=7^{10}\cdot 79^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{12} + \frac{1}{18} a^{11} + \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} + \frac{4}{9} a^{6} - \frac{1}{6} a^{5} + \frac{2}{9} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{18} a - \frac{1}{2}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} + \frac{1}{18} a^{11} + \frac{1}{18} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{4}{9} a^{7} - \frac{1}{6} a^{6} + \frac{2}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{18} a^{2} + \frac{1}{6} a$, $\frac{1}{18} a^{16} + \frac{1}{18} a^{13} - \frac{1}{18} a^{11} + \frac{1}{18} a^{10} + \frac{1}{18} a^{9} + \frac{4}{9} a^{8} + \frac{1}{6} a^{6} + \frac{4}{9} a^{5} + \frac{1}{3} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{9} a - \frac{1}{2}$, $\frac{1}{18} a^{17} + \frac{1}{18} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{9} a - \frac{1}{2}$, $\frac{1}{9666} a^{18} + \frac{59}{3222} a^{17} + \frac{7}{3222} a^{16} + \frac{28}{4833} a^{15} - \frac{53}{3222} a^{14} - \frac{43}{4833} a^{13} + \frac{575}{9666} a^{12} + \frac{509}{9666} a^{11} - \frac{151}{3222} a^{10} - \frac{227}{3222} a^{9} + \frac{151}{3222} a^{8} - \frac{1837}{4833} a^{7} + \frac{10}{179} a^{6} - \frac{4525}{9666} a^{5} - \frac{1487}{9666} a^{4} - \frac{1169}{9666} a^{3} - \frac{4813}{9666} a^{2} + \frac{51}{179} a + \frac{68}{179}$, $\frac{1}{127358559100519806572094091084794} a^{19} - \frac{274653970278454825226835233}{63679279550259903286047045542397} a^{18} + \frac{483993171998928578420856828911}{42452853033506602190698030361598} a^{17} + \frac{681302408209197018367194056887}{63679279550259903286047045542397} a^{16} - \frac{756324361347671466785796609661}{63679279550259903286047045542397} a^{15} + \frac{1037213455187128108420021215265}{127358559100519806572094091084794} a^{14} + \frac{5850016112149044755428445905771}{127358559100519806572094091084794} a^{13} + \frac{11399483896402649305802213135}{237166776723500570897754359562} a^{12} - \frac{335898739302581020757647957567}{63679279550259903286047045542397} a^{11} + \frac{287456657623649557335141483940}{21226426516753301095349015180799} a^{10} - \frac{5586581857783277744659184609891}{42452853033506602190698030361598} a^{9} - \frac{12649405287158417567786343607415}{127358559100519806572094091084794} a^{8} - \frac{17297321806623373840490484881}{1480913477913021006652256873079} a^{7} + \frac{19779173739901026567552472801979}{127358559100519806572094091084794} a^{6} + \frac{55395571731965834957843625637589}{127358559100519806572094091084794} a^{5} - \frac{542808143713536112967262837332}{21226426516753301095349015180799} a^{4} - \frac{21873548935795472010991633048858}{63679279550259903286047045542397} a^{3} + \frac{25596156794637752065983000850067}{63679279550259903286047045542397} a^{2} + \frac{975539786740563407234198820731}{42452853033506602190698030361598} a - \frac{1105397033344570818080069295288}{2358491835194811232816557242311}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 561201.28151 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-79}) \), \(\Q(\sqrt{553}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}, \sqrt{-79})\), 5.1.6241.1 x5, 10.0.3077056399.1, 10.2.51716086897993.1 x5, 10.0.654634011367.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $79$ | 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |