Normalized defining polynomial
\( x^{20} - 27 x^{18} + 324 x^{16} - 2187 x^{14} + 8964 x^{12} - 22572 x^{10} + 34452 x^{8} - 30132 x^{6} + 14175 x^{4} - 2916 x^{2} + 243 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26696074417804819521986853076992=2^{20}\cdot 3^{15}\cdot 36497^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{9} a^{8}$, $\frac{1}{9} a^{9}$, $\frac{1}{9} a^{10}$, $\frac{1}{9} a^{11}$, $\frac{1}{27} a^{12}$, $\frac{1}{27} a^{13}$, $\frac{1}{27} a^{14}$, $\frac{1}{27} a^{15}$, $\frac{1}{81} a^{16}$, $\frac{1}{81} a^{17}$, $\frac{1}{747596385} a^{18} + \frac{1815184}{747596385} a^{16} - \frac{473894}{249198795} a^{14} - \frac{1821193}{249198795} a^{12} + \frac{212771}{16613253} a^{10} - \frac{3232823}{83066265} a^{8} + \frac{146045}{1845917} a^{6} - \frac{1652186}{27688755} a^{4} + \frac{1459588}{9229585} a^{2} - \frac{2936238}{9229585}$, $\frac{1}{747596385} a^{19} + \frac{1815184}{747596385} a^{17} - \frac{473894}{249198795} a^{15} - \frac{1821193}{249198795} a^{13} + \frac{212771}{16613253} a^{11} - \frac{3232823}{83066265} a^{9} + \frac{146045}{1845917} a^{7} - \frac{1652186}{27688755} a^{5} + \frac{1459588}{9229585} a^{3} - \frac{2936238}{9229585} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2481484}{747596385} a^{18} - \frac{21946643}{249198795} a^{16} + \frac{257933704}{249198795} a^{14} - \frac{564412934}{83066265} a^{12} + \frac{445058651}{16613253} a^{10} - \frac{1762907494}{27688755} a^{8} + \frac{493044266}{5537751} a^{6} - \frac{621182448}{9229585} a^{4} + \frac{236655422}{9229585} a^{2} - \frac{24034792}{9229585} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70827885.0617 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.36497.1, 10.0.323683535187.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 36497 | Data not computed | ||||||