Normalized defining polynomial
\( x^{20} + 305 x^{18} + 35990 x^{16} + 2154825 x^{14} + 71180900 x^{12} + 1315892000 x^{10} + 13257358750 x^{8} + 68522062500 x^{6} + 163018230000 x^{4} + 148205028125 x^{2} + 21649090625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(266941959144749707507722683125783712000000000000000=2^{20}\cdot 5^{15}\cdot 61^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $332.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1220=2^{2}\cdot 5\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1220}(1,·)$, $\chi_{1220}(643,·)$, $\chi_{1220}(81,·)$, $\chi_{1220}(1089,·)$, $\chi_{1220}(587,·)$, $\chi_{1220}(461,·)$, $\chi_{1220}(1167,·)$, $\chi_{1220}(529,·)$, $\chi_{1220}(149,·)$, $\chi_{1220}(663,·)$, $\chi_{1220}(987,·)$, $\chi_{1220}(1183,·)$, $\chi_{1220}(609,·)$, $\chi_{1220}(1187,·)$, $\chi_{1220}(741,·)$, $\chi_{1220}(241,·)$, $\chi_{1220}(843,·)$, $\chi_{1220}(647,·)$, $\chi_{1220}(369,·)$, $\chi_{1220}(23,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{125} a^{14}$, $\frac{1}{125} a^{15}$, $\frac{1}{625} a^{16}$, $\frac{1}{625} a^{17}$, $\frac{1}{159535818330383668572406423824556048270625} a^{18} + \frac{55247626603282265639203863096684338228}{159535818330383668572406423824556048270625} a^{16} + \frac{16482952491920828175864060637020991511}{6381432733215346742896256952982241930825} a^{14} - \frac{127138908515736037609300654010544940818}{31907163666076733714481284764911209654125} a^{12} - \frac{3887049003818501549911223951342748108}{1276286546643069348579251390596448386165} a^{10} - \frac{35174362709428064613803314921898242728}{6381432733215346742896256952982241930825} a^{8} + \frac{5450527617126042537804194545561922013}{255257309328613869715850278119289677233} a^{6} + \frac{15376643292111494086002730151328690151}{255257309328613869715850278119289677233} a^{4} - \frac{69506571274289902895103773528848804371}{255257309328613869715850278119289677233} a^{2} - \frac{85615502040168296093419040069195704656}{255257309328613869715850278119289677233}$, $\frac{1}{53763570777339296308900964828875388267200625} a^{19} - \frac{926926700892023195140126857830347051599}{2150542831093571852356038593155015530688025} a^{17} + \frac{41689356183023664904562915636629322346534}{10752714155467859261780192965775077653440125} a^{15} - \frac{14421548230918112741696916228690766865866}{10752714155467859261780192965775077653440125} a^{13} - \frac{5379838740919983771782411960261796962433}{2150542831093571852356038593155015530688025} a^{11} - \frac{1998041885305073796706392832314839130963}{430108566218714370471207718631003106137605} a^{9} + \frac{36784305181406027451771461021905523131617}{430108566218714370471207718631003106137605} a^{7} + \frac{6652066685836072106698109961252860298209}{86021713243742874094241543726200621227521} a^{5} + \frac{12948616204485017452613260410554924734512}{86021713243742874094241543726200621227521} a^{3} + \frac{23398056956192307717764806546905454600780}{86021713243742874094241543726200621227521} a$
Class group and class number
$C_{2}\times C_{2}\times C_{122}\times C_{250100}$, which has order $122048800$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 398872163.22998685 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{305}) \), 4.0.453962000.2, 5.5.13845841.1, 10.10.36544206540106690625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||