Normalized defining polynomial
\( x^{20} - 10 x^{19} + 50 x^{18} - 165 x^{17} + 386 x^{16} - 640 x^{15} + 880 x^{14} - 1590 x^{13} + 4691 x^{12} - 13170 x^{11} + 29250 x^{10} - 50875 x^{9} + 78876 x^{8} - 111880 x^{7} + 156405 x^{6} - 191825 x^{5} + 181936 x^{4} - 122455 x^{3} + 29985 x^{2} + 10150 x + 43025 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2648374236155086600616455078125=3^{16}\cdot 5^{15}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{880} a^{16} - \frac{1}{110} a^{15} - \frac{9}{110} a^{14} + \frac{51}{220} a^{13} + \frac{11}{80} a^{12} + \frac{109}{440} a^{11} + \frac{3}{88} a^{10} + \frac{367}{880} a^{9} + \frac{1}{8} a^{8} + \frac{41}{110} a^{7} - \frac{409}{880} a^{6} - \frac{163}{440} a^{5} + \frac{37}{220} a^{4} - \frac{213}{880} a^{3} + \frac{23}{440} a^{2} - \frac{21}{176} a - \frac{75}{176}$, $\frac{1}{880} a^{17} - \frac{17}{110} a^{15} + \frac{17}{220} a^{14} - \frac{7}{880} a^{13} - \frac{67}{440} a^{12} - \frac{213}{440} a^{11} - \frac{273}{880} a^{10} - \frac{17}{440} a^{9} - \frac{7}{55} a^{8} - \frac{85}{176} a^{7} + \frac{181}{440} a^{6} - \frac{13}{44} a^{5} + \frac{91}{880} a^{4} - \frac{169}{440} a^{3} - \frac{177}{880} a^{2} - \frac{67}{176} a + \frac{1}{11}$, $\frac{1}{80211583745768998160} a^{18} - \frac{9}{80211583745768998160} a^{17} - \frac{32654317908304511}{80211583745768998160} a^{16} + \frac{65308635816609073}{20052895936442249540} a^{15} - \frac{4816993029741001339}{80211583745768998160} a^{14} - \frac{10958445171860125531}{80211583745768998160} a^{13} - \frac{100706626016275847}{943665691126694096} a^{12} + \frac{5177378856682672411}{80211583745768998160} a^{11} - \frac{10977965711776743147}{80211583745768998160} a^{10} - \frac{37557154079836360951}{80211583745768998160} a^{9} + \frac{1768407053893680903}{7291962158706272560} a^{8} - \frac{417110733274985567}{4221662302408894640} a^{7} - \frac{25225764712662459983}{80211583745768998160} a^{6} + \frac{24931931965920836561}{80211583745768998160} a^{5} - \frac{1513354749417524043}{4221662302408894640} a^{4} + \frac{29941948843752425}{235916422781673524} a^{3} + \frac{1128884199547010568}{5013223984110562385} a^{2} + \frac{1663665977511319719}{8021158374576899816} a - \frac{1950929934277789075}{16042316749153799632}$, $\frac{1}{470761785003918250201040} a^{19} + \frac{585}{94152357000783650040208} a^{18} + \frac{59763138740168395161}{117690446250979562550260} a^{17} - \frac{12771140226466701243}{23538089250195912510052} a^{16} + \frac{91607097318724338513637}{470761785003918250201040} a^{15} + \frac{39573317042001604699967}{470761785003918250201040} a^{14} - \frac{28192795855706551713097}{117690446250979562550260} a^{13} + \frac{2686110806849859134199}{42796525909447113654640} a^{12} + \frac{34206915357669364071977}{470761785003918250201040} a^{11} - \frac{3952406386729997738141}{21398262954723556827320} a^{10} + \frac{23712656612819141365719}{470761785003918250201040} a^{9} - \frac{185781853000933980150683}{470761785003918250201040} a^{8} + \frac{55817059565377603546013}{235380892501959125100520} a^{7} - \frac{220115466610595956346937}{470761785003918250201040} a^{6} - \frac{22316335848721894109975}{94152357000783650040208} a^{5} + \frac{6666892206615935013889}{470761785003918250201040} a^{4} - \frac{55733440290765640154139}{117690446250979562550260} a^{3} - \frac{155520455562657733091183}{470761785003918250201040} a^{2} + \frac{3892965354502523516779}{23538089250195912510052} a + \frac{2476622520700065593893}{5884522312548978127513}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8803149.53857 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.36125.1, 5.1.2926125.1 x5, 10.2.42811037578125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.2926125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |