Normalized defining polynomial
\( x^{20} + 580 x^{18} + 142680 x^{16} + 19490175 x^{14} + 1627250900 x^{12} + 86282306695 x^{10} + 2930498707675 x^{8} + 62830388169700 x^{6} + 812534226323875 x^{4} + 5699366824174475 x^{2} + 16279165773981745 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26334194176019849978482055664062500000000000000000000=2^{20}\cdot 5^{35}\cdot 29^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $417.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2900=2^{2}\cdot 5^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2900}(1,·)$, $\chi_{2900}(2883,·)$, $\chi_{2900}(581,·)$, $\chi_{2900}(1161,·)$, $\chi_{2900}(1143,·)$, $\chi_{2900}(1741,·)$, $\chi_{2900}(2321,·)$, $\chi_{2900}(2627,·)$, $\chi_{2900}(563,·)$, $\chi_{2900}(1467,·)$, $\chi_{2900}(289,·)$, $\chi_{2900}(1723,·)$, $\chi_{2900}(869,·)$, $\chi_{2900}(1449,·)$, $\chi_{2900}(2029,·)$, $\chi_{2900}(2609,·)$, $\chi_{2900}(307,·)$, $\chi_{2900}(887,·)$, $\chi_{2900}(2047,·)$, $\chi_{2900}(2303,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{29} a^{4}$, $\frac{1}{29} a^{5}$, $\frac{1}{29} a^{6}$, $\frac{1}{29} a^{7}$, $\frac{1}{841} a^{8}$, $\frac{1}{841} a^{9}$, $\frac{1}{841} a^{10}$, $\frac{1}{841} a^{11}$, $\frac{1}{24389} a^{12}$, $\frac{1}{24389} a^{13}$, $\frac{1}{24389} a^{14}$, $\frac{1}{24389} a^{15}$, $\frac{1}{1378490669} a^{16} + \frac{338}{47534161} a^{14} - \frac{23}{1639109} a^{12} - \frac{584}{1639109} a^{10} - \frac{582}{1639109} a^{8} - \frac{803}{56521} a^{6} - \frac{193}{56521} a^{4} - \frac{917}{1949} a^{2} - \frac{293}{1949}$, $\frac{1}{59275098767} a^{17} - \frac{17203}{2043968923} a^{15} - \frac{33800}{2043968923} a^{13} + \frac{15008}{70481687} a^{11} - \frac{8378}{70481687} a^{9} + \frac{6993}{2430403} a^{7} + \frac{9552}{2430403} a^{5} - \frac{30152}{83807} a^{3} - \frac{41222}{83807} a$, $\frac{1}{3748841971558366171433600255595319} a^{18} - \frac{21611251770818404852409}{3748841971558366171433600255595319} a^{16} + \frac{769576964382975747336572593}{129270412812357454187365526055011} a^{14} - \frac{98308143322893001161292609}{129270412812357454187365526055011} a^{12} - \frac{2590192962061554651956413239}{4457600441805429454736742277759} a^{10} + \frac{2158262763314548716717814004}{4457600441805429454736742277759} a^{8} - \frac{2623730776780336022703735695}{153710360062256188094370423371} a^{6} + \frac{2076583666921117120088701307}{153710360062256188094370423371} a^{4} - \frac{1956928363047905569226818848}{5300357243526075451530014599} a^{2} + \frac{777260839979512106453518}{2866607487034113278274751}$, $\frac{1}{1098410697666601288230044874889428467} a^{19} + \frac{4848238614606785014525580}{1098410697666601288230044874889428467} a^{17} + \frac{696146064511422155498689173879}{37876230954020734076898099134118223} a^{15} + \frac{36714341627104978582003233953}{37876230954020734076898099134118223} a^{13} + \frac{102298657293689970175248533267}{1306076929448990830237865487383387} a^{11} + \frac{411889026282519400649220263077}{1306076929448990830237865487383387} a^{9} + \frac{17350445655607550340523373817}{1553004672353140107298294277507} a^{7} + \frac{250006964844550852140127806997}{45037135498241063111650534047703} a^{5} - \frac{678828365886672949023313403076}{1553004672353140107298294277507} a^{3} + \frac{6705234197807057936558010124}{36116387729142793192983587849} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{469740200}$, which has order $3757921600$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 257696579.12792215 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), 4.0.48778000.3, 5.5.390625.1, 10.10.15648764801025390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 5 | Data not computed | ||||||
| 29 | Data not computed | ||||||