Properties

Label 20.0.26334194176...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 5^{35}\cdot 29^{15}$
Root discriminant $417.86$
Ramified primes $2, 5, 29$
Class number $3529335104$ (GRH)
Class group $[2, 2, 2, 441166888]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2276840094745, 0, 44555856193975, 0, 106563464376375, 0, 22404681693200, 0, 1686964570175, 0, 64198067195, 0, 1399760400, 0, 18228675, 0, 139780, 0, 580, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 580*x^18 + 139780*x^16 + 18228675*x^14 + 1399760400*x^12 + 64198067195*x^10 + 1686964570175*x^8 + 22404681693200*x^6 + 106563464376375*x^4 + 44555856193975*x^2 + 2276840094745)
 
gp: K = bnfinit(x^20 + 580*x^18 + 139780*x^16 + 18228675*x^14 + 1399760400*x^12 + 64198067195*x^10 + 1686964570175*x^8 + 22404681693200*x^6 + 106563464376375*x^4 + 44555856193975*x^2 + 2276840094745, 1)
 

Normalized defining polynomial

\( x^{20} + 580 x^{18} + 139780 x^{16} + 18228675 x^{14} + 1399760400 x^{12} + 64198067195 x^{10} + 1686964570175 x^{8} + 22404681693200 x^{6} + 106563464376375 x^{4} + 44555856193975 x^{2} + 2276840094745 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(26334194176019849978482055664062500000000000000000000=2^{20}\cdot 5^{35}\cdot 29^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $417.86$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2900=2^{2}\cdot 5^{2}\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{2900}(1,·)$, $\chi_{2900}(1027,·)$, $\chi_{2900}(581,·)$, $\chi_{2900}(1607,·)$, $\chi_{2900}(1161,·)$, $\chi_{2900}(2187,·)$, $\chi_{2900}(1741,·)$, $\chi_{2900}(2767,·)$, $\chi_{2900}(2321,·)$, $\chi_{2900}(289,·)$, $\chi_{2900}(869,·)$, $\chi_{2900}(423,·)$, $\chi_{2900}(1449,·)$, $\chi_{2900}(1003,·)$, $\chi_{2900}(2029,·)$, $\chi_{2900}(1583,·)$, $\chi_{2900}(2609,·)$, $\chi_{2900}(2163,·)$, $\chi_{2900}(2743,·)$, $\chi_{2900}(447,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{29} a^{4}$, $\frac{1}{29} a^{5}$, $\frac{1}{29} a^{6}$, $\frac{1}{29} a^{7}$, $\frac{1}{841} a^{8}$, $\frac{1}{841} a^{9}$, $\frac{1}{841} a^{10}$, $\frac{1}{841} a^{11}$, $\frac{1}{24389} a^{12}$, $\frac{1}{24389} a^{13}$, $\frac{1}{24389} a^{14}$, $\frac{1}{24389} a^{15}$, $\frac{1}{338570463733} a^{16} + \frac{123837}{11674843577} a^{14} + \frac{13858}{11674843577} a^{12} - \frac{143431}{402580813} a^{10} + \frac{123557}{402580813} a^{8} - \frac{57612}{13882097} a^{6} - \frac{214214}{13882097} a^{4} + \frac{178735}{478693} a^{2} - \frac{231494}{478693}$, $\frac{1}{338570463733} a^{17} + \frac{123837}{11674843577} a^{15} + \frac{13858}{11674843577} a^{13} - \frac{143431}{402580813} a^{11} + \frac{123557}{402580813} a^{9} - \frac{57612}{13882097} a^{7} - \frac{214214}{13882097} a^{5} + \frac{178735}{478693} a^{3} - \frac{231494}{478693} a$, $\frac{1}{66097511806088232065566185109183} a^{18} + \frac{46971137167028939318}{66097511806088232065566185109183} a^{16} - \frac{38466181378408589429345909}{2279224545037525243640213279627} a^{14} + \frac{28192965726812137214009672}{2279224545037525243640213279627} a^{12} - \frac{40287738062947853590071833}{78593949828880180815179768263} a^{10} + \frac{20406754424699195464263446}{78593949828880180815179768263} a^{8} + \frac{35930656221453039678450019}{2710136200995868303971716147} a^{6} + \frac{37687582640041402492434589}{2710136200995868303971716147} a^{4} - \frac{44890411201284935573067742}{93452972448133389792128143} a^{2} - \frac{42877380651083708085844743}{93452972448133389792128143}$, $\frac{1}{9848529259107146577769361581268267} a^{19} + \frac{14493641469012012769492}{9848529259107146577769361581268267} a^{17} - \frac{959570068489589630823804418}{339604457210591261302391778664423} a^{15} - \frac{6874030982872617701069177904}{339604457210591261302391778664423} a^{13} + \frac{410842145669795795051701034}{11710498524503146941461785471187} a^{11} + \frac{6104230733230605793006966942}{11710498524503146941461785471187} a^{9} + \frac{3222106900332935592315975680}{403810293948384377291785705903} a^{7} + \frac{2643639863510336813615358076}{403810293948384377291785705903} a^{5} + \frac{574722789150227063678391145}{13924492894771875079027093307} a^{3} + \frac{724735905266662755985493593}{13924492894771875079027093307} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{441166888}$, which has order $3529335104$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 257696579.12792215 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{145}) \), 4.0.48778000.2, 5.5.390625.1, 10.10.15648764801025390625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ $20$ $20$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ $20$ $20$ R $20$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
5Data not computed
29Data not computed