Normalized defining polynomial
\( x^{20} - 2 x^{19} - 7 x^{18} - 12 x^{17} + 84 x^{16} + 128 x^{15} + 807 x^{14} - 1078 x^{13} + 4643 x^{12} - 4888 x^{11} + 19612 x^{10} - 23016 x^{9} + 51895 x^{8} - 49766 x^{7} + 87619 x^{6} - 71516 x^{5} + 97016 x^{4} - 55080 x^{3} + 52065 x^{2} - 15410 x + 9305 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26228105183385632000000000000000=2^{20}\cdot 5^{15}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{8} a^{2} - \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{7}{16} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a - \frac{1}{16}$, $\frac{1}{80} a^{16} + \frac{1}{40} a^{15} - \frac{1}{16} a^{13} + \frac{3}{40} a^{12} - \frac{1}{8} a^{11} - \frac{7}{40} a^{10} + \frac{3}{40} a^{8} - \frac{1}{8} a^{7} - \frac{11}{40} a^{5} + \frac{21}{80} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{3}{16} a - \frac{1}{8}$, $\frac{1}{80} a^{17} + \frac{1}{80} a^{15} - \frac{1}{16} a^{14} - \frac{1}{20} a^{13} - \frac{7}{80} a^{12} + \frac{3}{40} a^{11} + \frac{9}{40} a^{10} - \frac{1}{20} a^{9} - \frac{1}{40} a^{8} + \frac{1}{8} a^{7} - \frac{3}{20} a^{6} - \frac{7}{16} a^{5} - \frac{11}{40} a^{4} - \frac{1}{16} a^{3} - \frac{1}{16} a^{2} - \frac{1}{8} a - \frac{1}{16}$, $\frac{1}{297600} a^{18} + \frac{7}{1488} a^{17} + \frac{47}{18600} a^{16} + \frac{1753}{74400} a^{15} - \frac{907}{24800} a^{14} + \frac{389}{24800} a^{13} + \frac{8329}{99200} a^{12} + \frac{16607}{74400} a^{11} + \frac{71}{300} a^{10} - \frac{14713}{74400} a^{9} - \frac{1151}{74400} a^{8} - \frac{3981}{24800} a^{7} - \frac{8177}{59520} a^{6} + \frac{3643}{24800} a^{5} - \frac{271}{12400} a^{4} + \frac{2251}{7440} a^{3} + \frac{119}{1240} a^{2} - \frac{505}{1488} a - \frac{20539}{59520}$, $\frac{1}{569429555908287505208657253604569600} a^{19} + \frac{123122682521376407722311737837}{189809851969429168402885751201523200} a^{18} - \frac{395011938711131975393235365875561}{71178694488535938151082156700571200} a^{17} - \frac{41445355786157513339404574014463}{47452462992357292100721437800380800} a^{16} - \frac{142665445759385260814764807951321}{17794673622133984537770539175142800} a^{15} + \frac{287965123746359383301714872932289}{5931557874044661512590179725047600} a^{14} + \frac{2342733571345342357279680893321833}{37961970393885833680577150240304640} a^{13} - \frac{1551086059914938249583046499362831}{22777182236331500208346290144182784} a^{12} + \frac{413404836956518619709989257576535}{1898098519694291684028857512015232} a^{11} + \frac{1022632433424318970925379876899249}{9490492598471458420144287560076160} a^{10} + \frac{4642698394457597495793674709234941}{23726231496178646050360718900190400} a^{9} + \frac{7840067812110778759197978432293989}{35589347244267969075541078350285600} a^{8} + \frac{114558055156662656448782847089526023}{569429555908287505208657253604569600} a^{7} - \frac{78575658581588755246775002733228839}{569429555908287505208657253604569600} a^{6} + \frac{16885852231429148564981338410228371}{47452462992357292100721437800380800} a^{5} - \frac{28357829049455655386785081332881983}{71178694488535938151082156700571200} a^{4} - \frac{156152098249322500692979598266801}{711786944885359381510821567005712} a^{3} + \frac{6809194727221710938258102031328579}{14235738897707187630216431340114240} a^{2} - \frac{13799832969088766563306750320549659}{113885911181657501041731450720913920} a + \frac{2738059925886554251674879112046051}{113885911181657501041731450720913920}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30783633.4882 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1922000.2, 5.1.1922000.1 x5, 10.2.18470420000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1922000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $31$ | 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.1 | $x^{2} - 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |