Normalized defining polynomial
\( x^{20} + 820 x^{18} + 267320 x^{16} + 44893975 x^{14} + 4245354840 x^{12} + 232074088051 x^{10} + 7204928006375 x^{8} + 119492300657500 x^{6} + 955070487099375 x^{4} + 3128076535624375 x^{2} + 2188557863100625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2616673119324506454012530994165039062500000000000000000000=2^{20}\cdot 5^{32}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $742.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4100=2^{2}\cdot 5^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4100}(1,·)$, $\chi_{4100}(2051,·)$, $\chi_{4100}(901,·)$, $\chi_{4100}(3911,·)$, $\chi_{4100}(3721,·)$, $\chi_{4100}(1911,·)$, $\chi_{4100}(1671,·)$, $\chi_{4100}(3981,·)$, $\chi_{4100}(141,·)$, $\chi_{4100}(1991,·)$, $\chi_{4100}(1431,·)$, $\chi_{4100}(3481,·)$, $\chi_{4100}(2191,·)$, $\chi_{4100}(1861,·)$, $\chi_{4100}(871,·)$, $\chi_{4100}(2921,·)$, $\chi_{4100}(2951,·)$, $\chi_{4100}(4041,·)$, $\chi_{4100}(3961,·)$, $\chi_{4100}(1931,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{41} a^{10}$, $\frac{1}{41} a^{11}$, $\frac{1}{41} a^{12}$, $\frac{1}{205} a^{13} + \frac{1}{5} a^{3}$, $\frac{1}{205} a^{14} + \frac{1}{5} a^{4}$, $\frac{1}{1025} a^{15} - \frac{1}{205} a^{11} - \frac{2}{5} a^{7} + \frac{11}{25} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{1025} a^{16} - \frac{1}{205} a^{12} - \frac{2}{5} a^{8} + \frac{11}{25} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{1025} a^{17} - \frac{2}{5} a^{9} + \frac{11}{25} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{13154386981282414149497033705479816838507852944148830640125} a^{18} - \frac{400417294537306394410923352537245512048226133221688032}{2630877396256482829899406741095963367701570588829766128025} a^{16} - \frac{4207847108953091865978651583990204047216510559712413481}{2630877396256482829899406741095963367701570588829766128025} a^{14} - \frac{700542065361561628604330688514799347632476101869937683}{105235095850259313195976269643838534708062823553190645121} a^{12} - \frac{11076016979903894870643824929867137629949086636367787032}{2630877396256482829899406741095963367701570588829766128025} a^{10} + \frac{124076122245338974281017701921865348456818116621966385786}{320838706860546686573098383060483337524581779125581235125} a^{8} + \frac{4983819024627365018842095475184891836259694522640695619}{64167741372109337314619676612096667504916355825116247025} a^{6} - \frac{868593627842969831214280916882966621044480572795744047}{2566709654884373492584787064483866700196654233004649881} a^{4} + \frac{610282267020465855804542154415406927120907541969211798}{2566709654884373492584787064483866700196654233004649881} a^{2} - \frac{748300103777378183157393101134161103832262272966951861}{2566709654884373492584787064483866700196654233004649881}$, $\frac{1}{24615554424721137232084958729423977133379813565179767949083750125} a^{19} + \frac{2671279209129738127236854043211753126706558661921340681576}{24015175048508426567887764614072172813053476648955871169837805} a^{17} + \frac{53882269730499776816337331387754585710293021181792059969823}{120075875242542132839438823070360864065267383244779355849189025} a^{15} - \frac{29915023856962054115457411208910151515914882298505202778629}{24015175048508426567887764614072172813053476648955871169837805} a^{13} + \frac{1129328815012800260588839795810979667651974137859781360121878}{120075875242542132839438823070360864065267383244779355849189025} a^{11} - \frac{127396520444081097576014871717979826802219823630038596273391439}{600379376212710664197194115351804320326336916223896779245945125} a^{9} - \frac{164979398492998167456191503775186135034256465772552448552404}{2928679883964442264376556660252704001591887396214130630468025} a^{7} + \frac{450441614544017361848021441654948237460762220600715101982039}{2928679883964442264376556660252704001591887396214130630468025} a^{5} - \frac{52566953142133881189749233703094619611063258008211307962623}{585735976792888452875311332050540800318377479242826126093605} a^{3} + \frac{17602476561974990061459075605471793582116853943061182372877}{117147195358577690575062266410108160063675495848565225218721} a$
Class group and class number
$C_{5}\times C_{5}\times C_{5}\times C_{19361620}$, which has order $2420202500$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1316349024241720099564}{3315354594870947968852575074650774225} a^{19} + \frac{26458601614259757060698}{80862307191974340703721343284165225} a^{17} + \frac{8668606873816674881977051}{80862307191974340703721343284165225} a^{15} + \frac{292017559664114460861694436}{16172461438394868140744268656833045} a^{13} + \frac{27499776648535088231996009186}{16172461438394868140744268656833045} a^{11} + \frac{7361876346100312205641447023074}{80862307191974340703721343284165225} a^{9} + \frac{5290949023857616572845517384163}{1972251394926203431798081543516225} a^{7} + \frac{79917320468761716416211381135246}{1972251394926203431798081543516225} a^{5} + \frac{24433714793237670921582282165965}{78890055797048137271923261740649} a^{3} + \frac{101708058820860379596316990091225}{78890055797048137271923261740649} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 326379971244.5939 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $5$ | 5.5.8.5 | $x^{5} - 5 x^{4} + 80$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.5 | $x^{5} - 5 x^{4} + 80$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.5 | $x^{5} - 5 x^{4} + 80$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.5 | $x^{5} - 5 x^{4} + 80$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| $41$ | 41.10.9.2 | $x^{10} - 1476$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.2 | $x^{10} - 1476$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |