Normalized defining polynomial
\( x^{20} + 820 x^{18} + 199670 x^{16} + 23046100 x^{14} + 1481258865 x^{12} + 56437120576 x^{10} + 1288069612000 x^{8} + 17049535776000 x^{6} + 119967187360000 x^{4} + 368664547840000 x^{2} + 264673853440000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2616673119324506454012530994165039062500000000000000000000=2^{20}\cdot 5^{32}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $742.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4100=2^{2}\cdot 5^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4100}(1,·)$, $\chi_{4100}(2051,·)$, $\chi_{4100}(901,·)$, $\chi_{4100}(2951,·)$, $\chi_{4100}(461,·)$, $\chi_{4100}(2511,·)$, $\chi_{4100}(1171,·)$, $\chi_{4100}(3221,·)$, $\chi_{4100}(1371,·)$, $\chi_{4100}(3421,·)$, $\chi_{4100}(291,·)$, $\chi_{4100}(2341,·)$, $\chi_{4100}(681,·)$, $\chi_{4100}(2731,·)$, $\chi_{4100}(1261,·)$, $\chi_{4100}(3311,·)$, $\chi_{4100}(1841,·)$, $\chi_{4100}(3891,·)$, $\chi_{4100}(631,·)$, $\chi_{4100}(2681,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{8} - \frac{1}{32} a^{6} + \frac{1}{64} a^{4} + \frac{1}{16} a^{2}$, $\frac{1}{128} a^{9} - \frac{1}{64} a^{7} + \frac{1}{128} a^{5} + \frac{1}{32} a^{3}$, $\frac{1}{5248} a^{10} + \frac{5}{128} a^{6} + \frac{3}{64} a^{4} - \frac{3}{16} a^{2}$, $\frac{1}{10496} a^{11} - \frac{1}{256} a^{9} + \frac{7}{256} a^{7} - \frac{11}{256} a^{5} + \frac{5}{64} a^{3} + \frac{1}{4} a$, $\frac{1}{482816} a^{12} - \frac{45}{482816} a^{10} - \frac{17}{11776} a^{8} - \frac{687}{11776} a^{6} + \frac{73}{2944} a^{4} + \frac{57}{184} a^{2} + \frac{3}{23}$, $\frac{1}{4828160} a^{13} - \frac{9}{965632} a^{11} + \frac{15}{23552} a^{9} + \frac{709}{23552} a^{7} - \frac{1}{46} a^{5} + \frac{1631}{7360} a^{3} - \frac{31}{92} a$, $\frac{1}{4828160} a^{14} - \frac{1}{965632} a^{12} + \frac{71}{965632} a^{10} - \frac{163}{23552} a^{8} + \frac{27}{1472} a^{6} - \frac{27}{3680} a^{4} + \frac{171}{368} a^{2} - \frac{11}{23}$, $\frac{1}{48281600} a^{15} + \frac{197}{4828160} a^{11} - \frac{1}{368} a^{9} + \frac{1033}{235520} a^{7} + \frac{1167}{147200} a^{5} - \frac{2239}{14720} a^{3} - \frac{3}{184} a$, $\frac{1}{101198233600} a^{16} + \frac{51}{1011982336} a^{14} - \frac{10073}{10119823360} a^{12} - \frac{68159}{1011982336} a^{10} - \frac{777547}{493649920} a^{8} + \frac{4340367}{308531200} a^{6} - \frac{2282139}{30853120} a^{4} - \frac{141691}{385664} a^{2} + \frac{2327}{6026}$, $\frac{1}{6274290483200} a^{17} + \frac{7563}{1568572620800} a^{15} - \frac{64569}{627429048320} a^{13} + \frac{13004437}{313714524160} a^{11} - \frac{117608587}{30606295040} a^{9} - \frac{331784673}{19128934400} a^{7} - \frac{1136103}{9564467200} a^{5} - \frac{127019}{23911168} a^{3} + \frac{114201}{373612} a$, $\frac{1}{6743403223009138121471688704000} a^{18} + \frac{116793195807585521}{84292540287614226518396108800} a^{16} + \frac{66533995193894401870047}{674340322300913812147168870400} a^{14} + \frac{14350150658545711736903}{67434032230091381214716887040} a^{12} + \frac{470746054475006208282737}{46506229124200952561873715200} a^{10} + \frac{249551577421782893813581759}{41118312335421573911412736000} a^{8} - \frac{57432982415946944354806213}{2055915616771078695570636800} a^{6} - \frac{4018675769251850987344179}{102795780838553934778531840} a^{4} - \frac{155173646405500750740327}{1284947260481924184731648} a^{2} - \frac{274715281529542016661}{647654869194518238272}$, $\frac{1}{552959064286749325960678473728000} a^{19} + \frac{2193268521924833}{168585080575228453036792217600} a^{17} - \frac{12843295996831255203129}{1348680644601827624294337740800} a^{15} - \frac{10553061291983684400593}{134868064460182762429433774080} a^{13} + \frac{267727657179828832249097}{93012458248401905123747430400} a^{11} + \frac{5679157540244433439541555359}{3371701611504569060735844352000} a^{9} - \frac{44218038837364540720744701}{4111831233542157391141273600} a^{7} - \frac{33863881862909503705705863}{1027957808385539347785318400} a^{5} - \frac{2287377701583069691099371}{12849472604819241847316480} a^{3} + \frac{12373906875889134324877}{40154601890060130772864} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{10}\times C_{10}\times C_{10}\times C_{6820}$, which has order $1091200000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7509509647}{192763837804946233753600} a^{19} + \frac{8905091871}{293847313727052185600} a^{17} + \frac{15281196866509}{2350778509816417484800} a^{15} + \frac{146196929192229}{235077850981641748480} a^{13} + \frac{1001295550254727}{32424531169881620480} a^{11} + \frac{958447404763948833}{1175389254908208742400} a^{9} + \frac{74233942829452161}{7167007651879321600} a^{7} + \frac{63351950485606467}{1791751912969830400} a^{5} - \frac{1326160168480165}{4479379782424576} a^{3} - \frac{92505961003365}{69990309100384} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 523576436698285.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $5$ | 5.5.8.3 | $x^{5} - 5 x^{4} + 30$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.3 | $x^{5} - 5 x^{4} + 30$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.3 | $x^{5} - 5 x^{4} + 30$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.3 | $x^{5} - 5 x^{4} + 30$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| $41$ | 41.10.9.4 | $x^{10} - 1912896$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.4 | $x^{10} - 1912896$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |