Normalized defining polynomial
\( x^{20} + 820 x^{18} + 230420 x^{16} + 26751475 x^{14} + 1471426040 x^{12} + 41080774551 x^{10} + 585061753875 x^{8} + 3916459359000 x^{6} + 9468336511875 x^{4} + 5199142836875 x^{2} + 815454150625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2616673119324506454012530994165039062500000000000000000000=2^{20}\cdot 5^{32}\cdot 41^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $742.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4100=2^{2}\cdot 5^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4100}(1,·)$, $\chi_{4100}(1091,·)$, $\chi_{4100}(2051,·)$, $\chi_{4100}(901,·)$, $\chi_{4100}(961,·)$, $\chi_{4100}(3331,·)$, $\chi_{4100}(1281,·)$, $\chi_{4100}(1041,·)$, $\chi_{4100}(3091,·)$, $\chi_{4100}(3141,·)$, $\chi_{4100}(2081,·)$, $\chi_{4100}(31,·)$, $\chi_{4100}(2951,·)$, $\chi_{4100}(1521,·)$, $\chi_{4100}(3571,·)$, $\chi_{4100}(761,·)$, $\chi_{4100}(2811,·)$, $\chi_{4100}(1021,·)$, $\chi_{4100}(3011,·)$, $\chi_{4100}(3071,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{41} a^{10}$, $\frac{1}{41} a^{11}$, $\frac{1}{451} a^{12} - \frac{1}{451} a^{10} + \frac{3}{11} a^{6} + \frac{2}{11} a^{4} + \frac{3}{11} a^{2} + \frac{5}{11}$, $\frac{1}{2255} a^{13} + \frac{2}{451} a^{11} + \frac{5}{11} a^{7} - \frac{4}{11} a^{5} - \frac{19}{55} a^{3} + \frac{1}{11} a$, $\frac{1}{2255} a^{14} + \frac{2}{451} a^{10} + \frac{5}{11} a^{8} + \frac{1}{11} a^{6} + \frac{16}{55} a^{4} - \frac{5}{11} a^{2} + \frac{1}{11}$, $\frac{1}{11275} a^{15} + \frac{24}{2255} a^{11} + \frac{1}{11} a^{9} + \frac{23}{55} a^{7} - \frac{39}{275} a^{5} + \frac{6}{55} a^{3} - \frac{2}{11} a$, $\frac{1}{124025} a^{16} + \frac{4}{24805} a^{14} - \frac{6}{24805} a^{12} - \frac{5}{451} a^{10} - \frac{262}{605} a^{8} + \frac{436}{3025} a^{6} - \frac{20}{121} a^{4} + \frac{26}{121} a^{2} + \frac{40}{121}$, $\frac{1}{124025} a^{17} - \frac{2}{124025} a^{15} + \frac{1}{4961} a^{13} - \frac{8}{2255} a^{11} + \frac{233}{605} a^{9} - \frac{719}{3025} a^{7} - \frac{742}{3025} a^{5} - \frac{211}{605} a^{3} - \frac{26}{121} a$, $\frac{1}{41183672544291392011005135712710778057926856848625} a^{18} + \frac{16373366355817757634517609423186580613532721}{8236734508858278402201027142542155611585371369725} a^{16} + \frac{1779524419730251288190443311300541607493343229}{8236734508858278402201027142542155611585371369725} a^{14} + \frac{1060735159885663814570268351809553573324550837}{1647346901771655680440205428508431122317074273945} a^{12} - \frac{10132498873696718167940909074755105546824538492}{8236734508858278402201027142542155611585371369725} a^{10} + \frac{19623005299062481288227743304506807278135980261}{1004479818153448585634271602749043367266508703625} a^{8} + \frac{61496681305546984582677750064240895303773164352}{200895963630689717126854320549808673453301740725} a^{6} + \frac{10683998501940422138920960121575921888201953506}{40179192726137943425370864109961734690660348145} a^{4} - \frac{3840698212503403839611296654071054778333349212}{8035838545227588685074172821992346938132069629} a^{2} + \frac{12423077617912712624881457660837046882916420}{8035838545227588685074172821992346938132069629}$, $\frac{1}{1487595435972349370829516507078826014230375996229183625} a^{19} + \frac{18088730137449211206389249049370841329243108044}{7256563102304143272339104912579639093806712176727725} a^{17} - \frac{88392935819190344493675381963646200412555918364}{7256563102304143272339104912579639093806712176727725} a^{15} - \frac{245843899178744108281766920012023661712697959753}{1451312620460828654467820982515927818761342435345545} a^{13} - \frac{83195497406746000368244902889221327084016289495997}{7256563102304143272339104912579639093806712176727725} a^{11} + \frac{401854717994400793699007597870478010949499682267111}{36282815511520716361695524562898195469033560883638625} a^{9} - \frac{9963465326649066045896859264576974173666473555366}{35397868791727528157751731280876288262471766715745} a^{7} + \frac{51628841072490724576591633435561454416178737658757}{176989343958637640788758656404381441312358833578725} a^{5} + \frac{1238774755603117931742517921796169750861229204371}{7079573758345505631550346256175257652494353343149} a^{3} - \frac{3146747249913136233370198750682278499174784801766}{7079573758345505631550346256175257652494353343149} a$
Class group and class number
$C_{5}\times C_{5}\times C_{1045}\times C_{129580}$, which has order $3385277500$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{214804316808189134424}{19112265072612867672849228616225} a^{19} + \frac{390351294616513255898}{42377527877190393953102502475} a^{17} + \frac{1205384576170629986501731}{466152806649094333484127527225} a^{15} + \frac{681207890870252589926646}{2273916129995582114556719645} a^{13} + \frac{1530191599303333398465061766}{93230561329818866696825505445} a^{11} + \frac{212110490985555283197669346084}{466152806649094333484127527225} a^{9} + \frac{72714958775025680481777210843}{11369580649977910572783598225} a^{7} + \frac{472800272570700087555565845476}{11369580649977910572783598225} a^{5} + \frac{41527390072044484032138905205}{454783225999116422911343929} a^{3} + \frac{12143983309696784146727460005}{454783225999116422911343929} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 332013200621.1798 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{20}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $5$ | 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| $41$ | 41.10.9.5 | $x^{10} - 68864256$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 41.10.9.5 | $x^{10} - 68864256$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |