Normalized defining polynomial
\( x^{20} - x^{19} + 22 x^{18} - 23 x^{17} + 153 x^{16} - 177 x^{15} + 304 x^{14} - 506 x^{13} - 476 x^{12} + 316 x^{11} - 1773 x^{10} + 5692 x^{9} - 8231 x^{8} + 16816 x^{7} + 2671 x^{6} + 10386 x^{5} + 74910 x^{4} - 82739 x^{3} + 50170 x^{2} + 37115 x + 51907 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(259481156482773157712790472689766689=3^{10}\cdot 41^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(123=3\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{123}(64,·)$, $\chi_{123}(1,·)$, $\chi_{123}(2,·)$, $\chi_{123}(4,·)$, $\chi_{123}(5,·)$, $\chi_{123}(8,·)$, $\chi_{123}(10,·)$, $\chi_{123}(77,·)$, $\chi_{123}(16,·)$, $\chi_{123}(20,·)$, $\chi_{123}(25,·)$, $\chi_{123}(31,·)$, $\chi_{123}(32,·)$, $\chi_{123}(80,·)$, $\chi_{123}(100,·)$, $\chi_{123}(37,·)$, $\chi_{123}(40,·)$, $\chi_{123}(50,·)$, $\chi_{123}(74,·)$, $\chi_{123}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{978} a^{17} + \frac{55}{978} a^{16} - \frac{10}{489} a^{15} + \frac{35}{489} a^{14} - \frac{46}{163} a^{13} + \frac{229}{489} a^{12} - \frac{7}{978} a^{11} + \frac{3}{163} a^{10} - \frac{233}{489} a^{9} + \frac{479}{978} a^{8} + \frac{481}{978} a^{7} - \frac{115}{326} a^{6} - \frac{128}{489} a^{5} - \frac{145}{978} a^{4} + \frac{9}{326} a^{3} - \frac{221}{978} a^{2} + \frac{187}{489} a - \frac{43}{489}$, $\frac{1}{978} a^{18} + \frac{26}{489} a^{16} + \frac{29}{978} a^{15} + \frac{56}{489} a^{14} - \frac{5}{489} a^{13} - \frac{95}{978} a^{12} + \frac{77}{978} a^{11} + \frac{11}{978} a^{10} + \frac{29}{978} a^{9} - \frac{218}{489} a^{8} + \frac{421}{978} a^{7} - \frac{176}{489} a^{6} + \frac{203}{489} a^{5} - \frac{74}{489} a^{4} - \frac{239}{978} a^{3} - \frac{58}{163} a^{2} - \frac{281}{978} a - \frac{81}{163}$, $\frac{1}{33157010133754899772879190462185114485606138} a^{19} - \frac{2204762350005826657165826504807380963379}{16578505066877449886439595231092557242803069} a^{18} - \frac{12268340748678427970228210168039671864253}{33157010133754899772879190462185114485606138} a^{17} - \frac{1109447350096786700928189943561969452955511}{33157010133754899772879190462185114485606138} a^{16} - \frac{1190479349604443862950909003265287190955166}{16578505066877449886439595231092557242803069} a^{15} - \frac{1508613017468217543125955445685377674532029}{11052336711251633257626396820728371495202046} a^{14} - \frac{5019349869274524564406160223029477698434707}{33157010133754899772879190462185114485606138} a^{13} - \frac{5443374547505168201307649454604939255517505}{33157010133754899772879190462185114485606138} a^{12} - \frac{7045344535244519207826900395511349698372952}{16578505066877449886439595231092557242803069} a^{11} - \frac{2773542351479507722254736352151459490707493}{16578505066877449886439595231092557242803069} a^{10} - \frac{2772203149509132338492984126843655345721725}{11052336711251633257626396820728371495202046} a^{9} - \frac{3062890676610232124617908641406861395865409}{16578505066877449886439595231092557242803069} a^{8} + \frac{1209336011943787689410844987432528527277407}{5526168355625816628813198410364185747601023} a^{7} + \frac{2225819295662891906280332623266676667792155}{33157010133754899772879190462185114485606138} a^{6} + \frac{3379832639218474408732020171213014405370224}{16578505066877449886439595231092557242803069} a^{5} + \frac{2731283160968908573404114496781877071794941}{11052336711251633257626396820728371495202046} a^{4} + \frac{1528278125568193374485647723861907431305193}{5526168355625816628813198410364185747601023} a^{3} + \frac{796492615409613976103436869932749217854773}{16578505066877449886439595231092557242803069} a^{2} - \frac{5889367945573970781785628256800148178119681}{16578505066877449886439595231092557242803069} a - \frac{2555565672612486834310934324293295255829403}{33157010133754899772879190462185114485606138}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{34}$, which has order $544$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5104264.63655 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.620289.1, 5.5.2825761.1, 10.10.327381934393961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||