Normalized defining polynomial
\( x^{20} + 200 x^{18} - 60 x^{17} + 14850 x^{16} - 11102 x^{15} + 475640 x^{14} - 657950 x^{13} + 6805195 x^{12} - 8013640 x^{11} + 32510275 x^{10} + 161576710 x^{9} + 258898250 x^{8} + 888713020 x^{7} + 3728327265 x^{6} + 5240050776 x^{5} + 44291166105 x^{4} - 6982300200 x^{3} + 144931284995 x^{2} - 31427128530 x + 94712038799 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25891569508530625000000000000000000000000000000=2^{30}\cdot 5^{34}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $209.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4600=2^{3}\cdot 5^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4600}(1,·)$, $\chi_{4600}(3909,·)$, $\chi_{4600}(3681,·)$, $\chi_{4600}(1609,·)$, $\chi_{4600}(461,·)$, $\chi_{4600}(4141,·)$, $\chi_{4600}(4369,·)$, $\chi_{4600}(3221,·)$, $\chi_{4600}(921,·)$, $\chi_{4600}(1381,·)$, $\chi_{4600}(2529,·)$, $\chi_{4600}(229,·)$, $\chi_{4600}(689,·)$, $\chi_{4600}(2989,·)$, $\chi_{4600}(2301,·)$, $\chi_{4600}(1841,·)$, $\chi_{4600}(2761,·)$, $\chi_{4600}(3449,·)$, $\chi_{4600}(1149,·)$, $\chi_{4600}(2069,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{7} a^{12} - \frac{1}{7} a^{6}$, $\frac{1}{49} a^{13} - \frac{1}{49} a^{12} + \frac{1}{49} a^{11} - \frac{1}{49} a^{10} + \frac{1}{49} a^{9} - \frac{1}{49} a^{8} - \frac{1}{49} a^{7} + \frac{8}{49} a^{6} - \frac{8}{49} a^{5} + \frac{8}{49} a^{4} - \frac{8}{49} a^{3} + \frac{8}{49} a^{2} - \frac{1}{7} a$, $\frac{1}{49} a^{14} - \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{49} a^{15} - \frac{2}{49} a^{9} + \frac{1}{49} a^{3}$, $\frac{1}{49} a^{16} - \frac{2}{49} a^{10} + \frac{1}{49} a^{4}$, $\frac{1}{49} a^{17} - \frac{2}{49} a^{11} + \frac{1}{49} a^{5}$, $\frac{1}{208396930943896116071699} a^{18} + \frac{1684450865135907223932}{208396930943896116071699} a^{17} + \frac{624092801396920044914}{208396930943896116071699} a^{16} - \frac{1299897929952836697964}{208396930943896116071699} a^{15} + \frac{1639070039607538164103}{208396930943896116071699} a^{14} + \frac{130662579470329292420}{208396930943896116071699} a^{13} - \frac{3505336828895777016233}{208396930943896116071699} a^{12} - \frac{1230156949211976905391}{29770990134842302295957} a^{11} + \frac{1611736928522687112304}{29770990134842302295957} a^{10} - \frac{10590372557597608767675}{208396930943896116071699} a^{9} - \frac{2507608754012423683406}{208396930943896116071699} a^{8} + \frac{4949245614670307790393}{208396930943896116071699} a^{7} - \frac{7709174783709841688199}{29770990134842302295957} a^{6} + \frac{52564652725011148812472}{208396930943896116071699} a^{5} + \frac{75468529333469748795266}{208396930943896116071699} a^{4} + \frac{6018887033443632985276}{208396930943896116071699} a^{3} + \frac{9649090346822623670846}{29770990134842302295957} a^{2} + \frac{307311485832919569955}{4252998590691757470851} a + \frac{211101161270792426320}{607571227241679638693}$, $\frac{1}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{19} - \frac{147916906431614235438830873560881625139775401930811472953}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{18} + \frac{292715920165102041468809020338088255055472871890502538789826458218643481210325}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{17} + \frac{930255256118517495441043595526394186110990633353709378172746542920701203141804}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{16} - \frac{178276586876037117617621242462553513326888530039032120590872091186149411944676}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{15} - \frac{529858116811278694593483438142995707223244515409904052246439625603120687602070}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{14} - \frac{327794526248160610265168145738416171509250011508793444211846924569932064901620}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{13} - \frac{589514549342506199657730565282047903337149490356942545965885279815140980194938}{14095380088925440884449027408090118744042700710830106422477967514252739001007351} a^{12} + \frac{225422259206290489739530967012572324714531933968310627052566205762166471351502}{14095380088925440884449027408090118744042700710830106422477967514252739001007351} a^{11} + \frac{3851459837515524449712760632747366095452935302920447356131655198281104387445869}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{10} + \frac{6000516267314893302566148832073250537207067704427784000175221085770487174458696}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{9} - \frac{3017320175681646766326627423842432877208166650077812253108298449277787372590609}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{8} - \frac{543813812433667273696339780953131487945976352140300741948889629326374135495252}{14095380088925440884449027408090118744042700710830106422477967514252739001007351} a^{7} + \frac{259560147485562772736288643513209717359191987821644483269231435489268397715052}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{6} + \frac{46961165737148636911499642398690584698391004755015628973826668888235797253833583}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{5} + \frac{27322831377430473934388945253830868293286176652534567239239346498979105789804904}{98667660622478086191143191856630831208298904975810744957345772599769173007051457} a^{4} + \frac{1340194361155908909459000465739375629649947118157493440320659028425500422680472}{14095380088925440884449027408090118744042700710830106422477967514252739001007351} a^{3} - \frac{14349042183972314589427139836060325904973040162373410753737190524961598767396}{287660818141335528254061783838573851919238790016940947397509541107198755122599} a^{2} - \frac{139482430914528811543808443246212660497560372118146509717689507286638868597203}{287660818141335528254061783838573851919238790016940947397509541107198755122599} a + \frac{18207089756001950332406037950018875260687742330183149294813642471987931842928}{41094402591619361179151683405510550274176970002420135342501363015314107874657}$
Class group and class number
$C_{10}\times C_{19176550}$, which has order $191765500$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42294001.73672045 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-230}) \), \(\Q(\sqrt{-115}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-115})\), 5.5.390625.1, 10.0.160908575000000000000000.1, 10.0.4910540008544921875.3, 10.10.5000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $23$ | 23.10.5.1 | $x^{10} - 1058 x^{6} + 279841 x^{2} - 25745372$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 23.10.5.1 | $x^{10} - 1058 x^{6} + 279841 x^{2} - 25745372$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |