Normalized defining polynomial
\( x^{20} - 7 x^{19} + 34 x^{18} - 118 x^{17} + 333 x^{16} - 755 x^{15} + 1489 x^{14} - 2358 x^{13} + 3373 x^{12} - 3625 x^{11} + 3380 x^{10} - 1671 x^{9} + 63 x^{8} + 2017 x^{7} - 1723 x^{6} + 1781 x^{5} - 509 x^{4} - 545 x^{3} + 595 x^{2} - 215 x + 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25869668051447537847885359761=19^{12}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{17} + \frac{1}{5} a^{16} - \frac{1}{10} a^{15} - \frac{1}{10} a^{14} - \frac{2}{5} a^{13} - \frac{1}{2} a^{12} - \frac{1}{10} a^{11} + \frac{1}{10} a^{9} - \frac{3}{10} a^{8} - \frac{1}{2} a^{6} - \frac{3}{10} a^{5} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} - \frac{1}{10} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{70} a^{18} + \frac{1}{70} a^{17} - \frac{4}{35} a^{16} - \frac{3}{14} a^{15} + \frac{16}{35} a^{14} - \frac{1}{70} a^{13} - \frac{3}{10} a^{12} + \frac{8}{35} a^{11} + \frac{1}{70} a^{10} + \frac{3}{10} a^{9} - \frac{1}{35} a^{8} - \frac{1}{2} a^{7} - \frac{33}{70} a^{6} + \frac{3}{70} a^{5} + \frac{3}{10} a^{4} - \frac{1}{10} a^{3} + \frac{3}{7} a^{2} + \frac{17}{70} a + \frac{29}{70}$, $\frac{1}{13996707004856679972782852750} a^{19} + \frac{32232749999761821056591441}{6998353502428339986391426375} a^{18} + \frac{113477607531085478768643616}{6998353502428339986391426375} a^{17} - \frac{253246583069115037799399599}{2799341400971335994556570550} a^{16} + \frac{1463384487792801109991800403}{13996707004856679972782852750} a^{15} + \frac{51033337681033392359981758}{999764786061191426627346625} a^{14} - \frac{6061436230504300603099265643}{13996707004856679972782852750} a^{13} - \frac{1168173959569619852789265887}{2799341400971335994556570550} a^{12} - \frac{635406822763439906246970596}{6998353502428339986391426375} a^{11} - \frac{6087894873728143617719050863}{13996707004856679972782852750} a^{10} - \frac{2028313050737674895445344977}{13996707004856679972782852750} a^{9} + \frac{3462335012923092827673598388}{6998353502428339986391426375} a^{8} + \frac{1462017677199049095203715527}{13996707004856679972782852750} a^{7} + \frac{52914660499929291183129986}{199952957212238285325469325} a^{6} + \frac{4627716593442245252693148257}{13996707004856679972782852750} a^{5} + \frac{216141870820906343582396061}{999764786061191426627346625} a^{4} + \frac{1974956894404699713049648086}{6998353502428339986391426375} a^{3} - \frac{71631388855031432235677213}{285647081731768979036384750} a^{2} + \frac{196053957182384076794543}{3321477694555453244609125} a - \frac{42560159085086795822286392}{162752407033217208985847125}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 911154.170751 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T73):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 5.5.667489.1, 10.0.8465289737299.1, 10.8.8465289737299.1, 10.2.160840505008681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.8.6.2 | $x^{8} - 19 x^{4} + 5776$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |