Normalized defining polynomial
\( x^{20} - 2 x^{19} + 2 x^{18} - 4 x^{17} + 13 x^{16} - 28 x^{15} + 38 x^{14} - 38 x^{13} + 44 x^{12} - 70 x^{11} + 102 x^{10} - 106 x^{9} + 91 x^{8} - 86 x^{7} + 98 x^{6} - 104 x^{5} + 91 x^{4} - 66 x^{3} + 32 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25567174371986127192064=2^{30}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{95} a^{18} + \frac{2}{19} a^{17} - \frac{9}{19} a^{16} - \frac{29}{95} a^{15} - \frac{8}{19} a^{14} - \frac{7}{19} a^{13} + \frac{28}{95} a^{12} - \frac{32}{95} a^{11} + \frac{1}{5} a^{10} - \frac{8}{95} a^{9} - \frac{32}{95} a^{8} - \frac{9}{95} a^{7} + \frac{7}{95} a^{6} - \frac{1}{5} a^{5} + \frac{31}{95} a^{4} + \frac{21}{95} a^{3} + \frac{11}{95} a^{2} - \frac{21}{95} a + \frac{33}{95}$, $\frac{1}{27585945245} a^{19} + \frac{124461287}{27585945245} a^{18} - \frac{767586784}{5517189049} a^{17} + \frac{9149526186}{27585945245} a^{16} - \frac{7621186983}{27585945245} a^{15} - \frac{2478813142}{5517189049} a^{14} + \frac{10759401948}{27585945245} a^{13} + \frac{13488696924}{27585945245} a^{12} - \frac{1223521328}{5517189049} a^{11} + \frac{2584954414}{5517189049} a^{10} + \frac{1412623972}{27585945245} a^{9} - \frac{558125538}{27585945245} a^{8} + \frac{1454330559}{27585945245} a^{7} + \frac{2411721808}{5517189049} a^{6} + \frac{8796515968}{27585945245} a^{5} - \frac{9881655557}{27585945245} a^{4} + \frac{4602893063}{27585945245} a^{3} + \frac{8111125606}{27585945245} a^{2} - \frac{344874364}{27585945245} a + \frac{10938513966}{27585945245}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{314909577}{290378371} a^{19} + \frac{234484346}{290378371} a^{18} - \frac{191860793}{290378371} a^{17} + \frac{892076338}{290378371} a^{16} - \frac{2869669630}{290378371} a^{15} + \frac{4780608666}{290378371} a^{14} - \frac{4592727940}{290378371} a^{13} + \frac{3832954980}{290378371} a^{12} - \frac{6587439460}{290378371} a^{11} + \frac{11589701229}{290378371} a^{10} - \frac{14132790357}{290378371} a^{9} + \frac{9778108667}{290378371} a^{8} - \frac{9019176363}{290378371} a^{7} + \frac{10057198858}{290378371} a^{6} - \frac{12951749525}{290378371} a^{5} + \frac{10776660125}{290378371} a^{4} - \frac{8224231477}{290378371} a^{3} + \frac{4200865311}{290378371} a^{2} + \frac{355453370}{290378371} a - \frac{151331344}{290378371} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1320.83893337 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T73):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.1.2209.1, 10.0.4996793344.1, 10.0.4996793344.3, 10.2.4996793344.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $47$ | 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |