Normalized defining polynomial
\( x^{20} - 5 x^{19} + 15 x^{18} - 45 x^{17} + 120 x^{16} - 275 x^{15} + 595 x^{14} - 1160 x^{13} + 2010 x^{12} - 3225 x^{11} + 4830 x^{10} - 6490 x^{9} + 7495 x^{8} - 7250 x^{7} + 5800 x^{6} - 3800 x^{5} + 2005 x^{4} - 825 x^{3} + 250 x^{2} - 50 x + 5 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2555356991291046142578125=5^{23}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{16} - \frac{1}{6} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{1062} a^{18} - \frac{35}{531} a^{17} + \frac{14}{531} a^{16} - \frac{110}{531} a^{15} - \frac{22}{531} a^{14} - \frac{35}{177} a^{13} - \frac{20}{177} a^{12} + \frac{212}{531} a^{11} - \frac{214}{531} a^{10} + \frac{49}{177} a^{9} + \frac{13}{531} a^{8} + \frac{155}{531} a^{7} - \frac{29}{59} a^{6} - \frac{14}{59} a^{5} - \frac{34}{531} a^{4} - \frac{361}{1062} a^{3} + \frac{259}{531} a^{2} - \frac{43}{177} a + \frac{34}{531}$, $\frac{1}{98766} a^{19} - \frac{1}{32922} a^{18} + \frac{83}{3658} a^{17} - \frac{203}{5487} a^{16} + \frac{1975}{32922} a^{15} + \frac{14365}{98766} a^{14} - \frac{3250}{16461} a^{13} - \frac{7525}{49383} a^{12} - \frac{49015}{98766} a^{11} + \frac{2801}{49383} a^{10} + \frac{24199}{49383} a^{9} + \frac{641}{10974} a^{8} + \frac{13841}{49383} a^{7} + \frac{2704}{5487} a^{6} - \frac{24917}{98766} a^{5} + \frac{8627}{32922} a^{4} + \frac{757}{98766} a^{3} + \frac{17224}{49383} a^{2} + \frac{20065}{49383} a + \frac{47567}{98766}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{32970}{1829} a^{19} + \frac{1721021}{16461} a^{18} - \frac{5150663}{16461} a^{17} + \frac{15031040}{16461} a^{16} - \frac{82469191}{32922} a^{15} + \frac{188633467}{32922} a^{14} - \frac{67454492}{5487} a^{13} + \frac{133242175}{5487} a^{12} - \frac{1375307855}{32922} a^{11} + \frac{1096050242}{16461} a^{10} - \frac{547345688}{5487} a^{9} + \frac{4405634855}{32922} a^{8} - \frac{2511799585}{16461} a^{7} + \frac{262940540}{1829} a^{6} - \frac{403490937}{3658} a^{5} + \frac{1122123980}{16461} a^{4} - \frac{544702865}{16461} a^{3} + \frac{394283975}{32922} a^{2} - \frac{16006240}{5487} a + \frac{12224003}{32922} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56436.2432248 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 100 |
| The 10 conjugacy class representatives for $C_5:F_5$ |
| Character table for $C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.2.714892578125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |