Properties

Label 20.0.25509164975...3125.1
Degree $20$
Signature $[0, 10]$
Discriminant $5^{10}\cdot 41\cdot 71^{2}\cdot 4861\cdot 5099^{2}$
Root discriminant $14.80$
Ramified primes $5, 41, 71, 4861, 5099$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1045

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, 10, -32, 111, -302, 660, -1203, 1888, -2596, 3147, -3359, 3136, -2535, 1751, -1016, 484, -183, 52, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 52*x^18 - 183*x^17 + 484*x^16 - 1016*x^15 + 1751*x^14 - 2535*x^13 + 3136*x^12 - 3359*x^11 + 3147*x^10 - 2596*x^9 + 1888*x^8 - 1203*x^7 + 660*x^6 - 302*x^5 + 111*x^4 - 32*x^3 + 10*x^2 - 4*x + 1)
 
gp: K = bnfinit(x^20 - 10*x^19 + 52*x^18 - 183*x^17 + 484*x^16 - 1016*x^15 + 1751*x^14 - 2535*x^13 + 3136*x^12 - 3359*x^11 + 3147*x^10 - 2596*x^9 + 1888*x^8 - 1203*x^7 + 660*x^6 - 302*x^5 + 111*x^4 - 32*x^3 + 10*x^2 - 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 52 x^{18} - 183 x^{17} + 484 x^{16} - 1016 x^{15} + 1751 x^{14} - 2535 x^{13} + 3136 x^{12} - 3359 x^{11} + 3147 x^{10} - 2596 x^{9} + 1888 x^{8} - 1203 x^{7} + 660 x^{6} - 302 x^{5} + 111 x^{4} - 32 x^{3} + 10 x^{2} - 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(255091649759845126953125=5^{10}\cdot 41\cdot 71^{2}\cdot 4861\cdot 5099^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 41, 71, 4861, 5099$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{59} a^{18} - \frac{9}{59} a^{17} + \frac{4}{59} a^{16} - \frac{5}{59} a^{15} + \frac{28}{59} a^{14} - \frac{26}{59} a^{13} - \frac{16}{59} a^{12} - \frac{3}{59} a^{11} - \frac{19}{59} a^{10} - \frac{16}{59} a^{9} - \frac{22}{59} a^{8} + \frac{12}{59} a^{7} - \frac{15}{59} a^{6} + \frac{25}{59} a^{5} - \frac{28}{59} a^{4} - \frac{7}{59} a^{3} + \frac{16}{59} a^{2} + \frac{21}{59} a - \frac{3}{59}$, $\frac{1}{59} a^{19} - \frac{18}{59} a^{17} - \frac{28}{59} a^{16} - \frac{17}{59} a^{15} - \frac{10}{59} a^{14} - \frac{14}{59} a^{13} - \frac{29}{59} a^{12} + \frac{13}{59} a^{11} - \frac{10}{59} a^{10} + \frac{11}{59} a^{9} - \frac{9}{59} a^{8} - \frac{25}{59} a^{7} + \frac{8}{59} a^{6} + \frac{20}{59} a^{5} - \frac{23}{59} a^{4} + \frac{12}{59} a^{3} - \frac{12}{59} a^{2} + \frac{9}{59} a - \frac{27}{59}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1831.27226513 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1045:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 29491200
The 702 conjugacy class representatives for t20n1045 are not computed
Character table for t20n1045 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.2.1131340625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ $20$ R $16{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ R $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
41Data not computed
71Data not computed
4861Data not computed
5099Data not computed