Normalized defining polynomial
\( x^{20} + 120 x^{16} + 450 x^{14} + 1020 x^{12} - 276 x^{10} + 1080 x^{8} + 10080 x^{6} + 22500 x^{4} + 22320 x^{2} + 10404 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(253899891671040000000000000000000000=2^{38}\cdot 3^{18}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6} a^{10}$, $\frac{1}{6} a^{11}$, $\frac{1}{6} a^{12}$, $\frac{1}{6} a^{13}$, $\frac{1}{6} a^{14}$, $\frac{1}{6} a^{15}$, $\frac{1}{3252} a^{16} - \frac{119}{1626} a^{14} + \frac{46}{813} a^{12} + \frac{17}{813} a^{10} - \frac{88}{271} a^{8} - \frac{217}{542} a^{6} + \frac{125}{271} a^{4} + \frac{54}{271} a^{2} - \frac{79}{271}$, $\frac{1}{9756} a^{17} - \frac{65}{813} a^{15} + \frac{121}{1626} a^{13} - \frac{79}{1626} a^{11} - \frac{88}{813} a^{9} + \frac{325}{1626} a^{7} + \frac{132}{271} a^{5} + \frac{18}{271} a^{3} + \frac{64}{271} a$, $\frac{1}{10292600911332348} a^{18} + \frac{143252368411}{1143622323481372} a^{16} - \frac{111688799344979}{1715433485222058} a^{14} + \frac{52638145102847}{1715433485222058} a^{12} - \frac{106952339363971}{1715433485222058} a^{10} + \frac{159908895285763}{1715433485222058} a^{8} + \frac{151969065924247}{571811161740686} a^{6} - \frac{59523015951101}{285905580870343} a^{4} - \frac{5875677248279}{40843654410049} a^{2} + \frac{54017912564326}{285905580870343}$, $\frac{1}{174974215492649916} a^{19} + \frac{149397728947}{3430866970444116} a^{17} - \frac{692737598234697}{9720789749591662} a^{15} + \frac{838143221923117}{14581184624387493} a^{13} + \frac{10521548394709}{571811161740686} a^{11} + \frac{7622994057930805}{29162369248774986} a^{9} + \frac{3124965106118441}{9720789749591662} a^{7} - \frac{1225300384444566}{4860394874795831} a^{5} + \frac{255463425139267}{694342124970833} a^{3} - \frac{1828105911320146}{4860394874795831} a$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2439011616.4501934 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-2}, \sqrt{-15})\), 5.1.4050000.3, 10.0.33592320000000000.77, 10.0.246037500000000.9, 10.2.503884800000000000.65 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.19.33 | $x^{10} - 6 x^{4} + 4 x^{2} - 14$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ |
| 2.10.19.33 | $x^{10} - 6 x^{4} + 4 x^{2} - 14$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| 5 | Data not computed | ||||||