Normalized defining polynomial
\( x^{20} - x^{19} + 145 x^{18} - 146 x^{17} + 8025 x^{16} - 8172 x^{15} + 216784 x^{14} - 225104 x^{13} + 3027292 x^{12} - 3113921 x^{11} + 21468861 x^{10} - 17477774 x^{9} + 59475307 x^{8} + 20117476 x^{7} - 87440612 x^{6} + 527395272 x^{5} + 104284815 x^{4} + 248531503 x^{3} + 2035349497 x^{2} + 1091380322 x + 3942396001 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2533995668777081618288969459861002822265625=3^{10}\cdot 5^{10}\cdot 41^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(615=3\cdot 5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{615}(256,·)$, $\chi_{615}(1,·)$, $\chi_{615}(389,·)$, $\chi_{615}(449,·)$, $\chi_{615}(74,·)$, $\chi_{615}(524,·)$, $\chi_{615}(271,·)$, $\chi_{615}(16,·)$, $\chi_{615}(406,·)$, $\chi_{615}(346,·)$, $\chi_{615}(286,·)$, $\chi_{615}(31,·)$, $\chi_{615}(419,·)$, $\chi_{615}(554,·)$, $\chi_{615}(556,·)$, $\chi_{615}(494,·)$, $\chi_{615}(496,·)$, $\chi_{615}(374,·)$, $\chi_{615}(569,·)$, $\chi_{615}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{219} a^{16} - \frac{14}{219} a^{15} + \frac{14}{219} a^{14} + \frac{1}{219} a^{13} + \frac{68}{219} a^{12} - \frac{35}{219} a^{11} + \frac{47}{219} a^{10} - \frac{29}{219} a^{9} + \frac{25}{73} a^{8} - \frac{4}{219} a^{7} - \frac{47}{219} a^{6} + \frac{95}{219} a^{5} + \frac{55}{219} a^{4} - \frac{34}{219} a^{3} + \frac{76}{219} a^{2} - \frac{31}{219} a - \frac{4}{219}$, $\frac{1}{219} a^{17} - \frac{12}{73} a^{15} - \frac{22}{219} a^{14} - \frac{64}{219} a^{13} - \frac{35}{73} a^{12} - \frac{5}{219} a^{11} - \frac{101}{219} a^{10} + \frac{34}{219} a^{9} - \frac{49}{219} a^{8} - \frac{103}{219} a^{7} - \frac{52}{219} a^{6} - \frac{25}{73} a^{5} + \frac{79}{219} a^{4} - \frac{35}{219} a^{3} + \frac{28}{73} a^{2} + \frac{17}{219}$, $\frac{1}{219} a^{18} - \frac{5}{73} a^{15} + \frac{2}{219} a^{14} + \frac{77}{219} a^{13} - \frac{13}{73} a^{12} - \frac{47}{219} a^{11} + \frac{47}{219} a^{10} + \frac{25}{73} a^{9} - \frac{31}{219} a^{8} + \frac{23}{219} a^{7} - \frac{88}{219} a^{6} - \frac{26}{73} a^{5} - \frac{26}{219} a^{4} + \frac{28}{219} a^{3} - \frac{38}{219} a^{2} - \frac{4}{219} a + \frac{2}{219}$, $\frac{1}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{19} + \frac{496695074975571263679152258434303696434298746450085126415932028561067018976666265005736}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{18} - \frac{64086784438264575843284218062869232300091729218820636256736173280794719761351423654704}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{17} + \frac{479558625916305186609251322549803930416637321886465253275743677810755824838084611263630}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{16} - \frac{10091867532067255075425917153085626852035188039187219691614342980127745166330624555937311}{87545662073795449341924655342438027387444421661281316161599950708157574746053438120153607} a^{15} - \frac{18723807623478961789924021153526058360259758440147427371132740495274625660423560608144528}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{14} + \frac{118311907598553055860216383237630934045338545662193534330571495382190214185904178966884108}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{13} - \frac{9469911705101006473357049380502405636305021978003440893956675481140977410604577848343104}{87545662073795449341924655342438027387444421661281316161599950708157574746053438120153607} a^{12} + \frac{9076147512475452439225982067725171190312445946292469612858749412685136042570437815670795}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{11} - \frac{6617091404580508652663297624395070340286139867495320724798044139291885625138344635055470}{87545662073795449341924655342438027387444421661281316161599950708157574746053438120153607} a^{10} - \frac{35298096868476448476189781005849790773865114000098712584182472623950001998109772571175957}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{9} + \frac{32925995255027659456923635927501341111268089160495595724813459982013160251395455263271580}{87545662073795449341924655342438027387444421661281316161599950708157574746053438120153607} a^{8} - \frac{125278455192030965721023668058281131602790326100631428178762939429422048787903757703116542}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{7} - \frac{73091465972193916997670030340036009591283901027375739845408552091000750935301289165162314}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{6} - \frac{26801865051281253332524745626281324718003596905419423766201416223516679636546674982375313}{87545662073795449341924655342438027387444421661281316161599950708157574746053438120153607} a^{5} + \frac{44658779021500186993394016333418696686408059116469761585348065654313043264009747517306766}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{4} + \frac{100111378741111974913343822113955784809941835291689875083775111959652003051716124132872462}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{3} + \frac{55741419662581820119627526112650387885260117166741997958350283229114466377977295958576374}{262636986221386348025773966027314082162333264983843948484799852124472724238160314360460821} a^{2} - \frac{42053112601684383443987008693112779664107386810758554307167661728926481698034263712215961}{87545662073795449341924655342438027387444421661281316161599950708157574746053438120153607} a + \frac{509608285000009526550114843045716872864770915930893936449577442979559961969296691859580}{1054767012937294570384634401716120811896920742907003809175903020580211743928354676146429}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{32644}$, which has order $2089216$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5104264.636551031 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.15507225.1, 5.5.2825761.1, 10.10.327381934393961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 41 | Data not computed | ||||||