Normalized defining polynomial
\( x^{20} - x^{19} + 10 x^{18} - 9 x^{17} + 65 x^{16} - 54 x^{15} + 235 x^{14} - 148 x^{13} + 574 x^{12} - 298 x^{11} + 830 x^{10} - 201 x^{9} + 704 x^{8} - 124 x^{7} + 362 x^{6} + 15 x^{5} + 91 x^{4} + 10 x^{3} + 17 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25187809928912253401368511601=3^{10}\cdot 37^{2}\cdot 47^{2}\cdot 239^{2}\cdot 1571417^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37, 47, 239, 1571417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3267034799702099711} a^{19} - \frac{1510844052793069891}{3267034799702099711} a^{18} - \frac{250619487270919874}{3267034799702099711} a^{17} - \frac{257140762234279085}{3267034799702099711} a^{16} - \frac{152037829593508823}{3267034799702099711} a^{15} + \frac{414534774692684685}{3267034799702099711} a^{14} + \frac{862270185961993486}{3267034799702099711} a^{13} - \frac{1005423791078703117}{3267034799702099711} a^{12} + \frac{167220725391160959}{3267034799702099711} a^{11} + \frac{1020801247308587379}{3267034799702099711} a^{10} + \frac{666914700939533569}{3267034799702099711} a^{9} + \frac{1562005008014786457}{3267034799702099711} a^{8} - \frac{916055078781509513}{3267034799702099711} a^{7} + \frac{473718284670442967}{3267034799702099711} a^{6} - \frac{1344083310886696272}{3267034799702099711} a^{5} + \frac{358191077728910858}{3267034799702099711} a^{4} + \frac{91189459085091029}{3267034799702099711} a^{3} - \frac{1042161416139681591}{3267034799702099711} a^{2} + \frac{346337070942451268}{3267034799702099711} a + \frac{95406066622047799}{3267034799702099711}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{945785585796613510}{3267034799702099711} a^{19} + \frac{981023347059747199}{3267034799702099711} a^{18} - \frac{9389066635156684202}{3267034799702099711} a^{17} + \frac{8790504739687032894}{3267034799702099711} a^{16} - \frac{60812168848393328889}{3267034799702099711} a^{15} + \frac{52750389587814447879}{3267034799702099711} a^{14} - \frac{217942589557688036339}{3267034799702099711} a^{13} + \frac{144784364466146292536}{3267034799702099711} a^{12} - \frac{526986067604205769691}{3267034799702099711} a^{11} + \frac{294831502881564351342}{3267034799702099711} a^{10} - \frac{745966809589009773739}{3267034799702099711} a^{9} + \frac{208013222996663422649}{3267034799702099711} a^{8} - \frac{608817540728773583124}{3267034799702099711} a^{7} + \frac{150488308944985198880}{3267034799702099711} a^{6} - \frac{296195506937508113675}{3267034799702099711} a^{5} + \frac{6393766537572833624}{3267034799702099711} a^{4} - \frac{64412078331137061641}{3267034799702099711} a^{3} + \frac{8358866792004002978}{3267034799702099711} a^{2} - \frac{10928284102620181358}{3267034799702099711} a + \frac{1516673687840527155}{3267034799702099711} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 135507.566191 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7257600 |
| The 84 conjugacy class representatives for t20n1021 are not computed |
| Character table for t20n1021 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.10.653113904957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.7.0.1 | $x^{7} - 4 x + 5$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 37.7.0.1 | $x^{7} - 4 x + 5$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.8.0.1 | $x^{8} - x + 20$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 47.8.0.1 | $x^{8} - x + 20$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 239 | Data not computed | ||||||
| 1571417 | Data not computed | ||||||