Normalized defining polynomial
\( x^{20} + 45 x^{16} - 8 x^{15} + 130 x^{13} + 400 x^{12} + 80 x^{11} + 72 x^{10} + 1050 x^{9} + 1105 x^{8} + 650 x^{7} + 1670 x^{6} + 2016 x^{5} + 1525 x^{4} + 1190 x^{3} + 550 x^{2} + 180 x + 164 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(250000000000000000000000000000=2^{28}\cdot 5^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{10} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{10} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{15} + \frac{1}{5} a^{5} - \frac{1}{2} a^{3} + \frac{1}{5}$, $\frac{1}{10} a^{16} + \frac{1}{5} a^{6} - \frac{1}{2} a^{4} + \frac{1}{5} a$, $\frac{1}{50} a^{17} - \frac{1}{50} a^{16} - \frac{1}{50} a^{15} + \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{25} a^{7} - \frac{6}{25} a^{6} + \frac{13}{50} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{4}{25} a^{2} + \frac{9}{25} a - \frac{6}{25}$, $\frac{1}{650} a^{18} - \frac{3}{325} a^{17} - \frac{1}{25} a^{16} - \frac{1}{130} a^{15} + \frac{1}{65} a^{14} - \frac{4}{13} a^{13} + \frac{32}{65} a^{12} + \frac{8}{65} a^{11} + \frac{23}{65} a^{10} - \frac{2}{65} a^{9} - \frac{79}{325} a^{8} + \frac{124}{325} a^{7} - \frac{77}{650} a^{6} - \frac{5}{13} a^{5} - \frac{9}{65} a^{4} - \frac{53}{650} a^{3} - \frac{2}{25} a^{2} + \frac{54}{325} a - \frac{3}{13}$, $\frac{1}{122019226527998976603561550} a^{19} - \frac{8141259350725293014471}{61009613263999488301780775} a^{18} - \frac{1194333776025329977653459}{122019226527998976603561550} a^{17} - \frac{268501322694274150068582}{12201922652799897660356155} a^{16} - \frac{278221424075879312327787}{9386094348307613584889350} a^{15} - \frac{606998176495185914970744}{12201922652799897660356155} a^{14} - \frac{5404388245083442383529652}{12201922652799897660356155} a^{13} + \frac{3998038548655677465780601}{12201922652799897660356155} a^{12} - \frac{195761606999183162835886}{938609434830761358488935} a^{11} + \frac{2097117193012890326979368}{12201922652799897660356155} a^{10} + \frac{622054512838562914654796}{61009613263999488301780775} a^{9} + \frac{23418845368005018799310383}{61009613263999488301780775} a^{8} + \frac{39483342418618454902726287}{122019226527998976603561550} a^{7} - \frac{515663314106126189717562}{12201922652799897660356155} a^{6} - \frac{20108044095189954644090407}{122019226527998976603561550} a^{5} - \frac{20575105024580657418719494}{61009613263999488301780775} a^{4} + \frac{60856864280581639829938741}{122019226527998976603561550} a^{3} + \frac{4174887686377536121394351}{61009613263999488301780775} a^{2} + \frac{1273229604604672009241067}{12201922652799897660356155} a - \frac{17654964047598186793502441}{61009613263999488301780775}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5742750047529375}{15500754466467302894} a^{19} - \frac{9505881841100515}{15500754466467302894} a^{18} + \frac{33737828709924875}{7750377233233651447} a^{17} - \frac{64629805816972425}{15500754466467302894} a^{16} + \frac{308766807711967971}{15500754466467302894} a^{15} - \frac{262220081680023300}{7750377233233651447} a^{14} + \frac{1578579226413240045}{7750377233233651447} a^{13} - \frac{1363259712033778375}{7750377233233651447} a^{12} + \frac{1923591562251311595}{7750377233233651447} a^{11} + \frac{1369937745953526927}{7750377233233651447} a^{10} + \frac{10287160881186007450}{7750377233233651447} a^{9} - \frac{5001890647910414595}{7750377233233651447} a^{8} + \frac{9977517969900355075}{15500754466467302894} a^{7} + \frac{48940848069631618515}{15500754466467302894} a^{6} + \frac{10435355438486258857}{7750377233233651447} a^{5} + \frac{13908210640647421175}{15500754466467302894} a^{4} + \frac{65446448993574849015}{15500754466467302894} a^{3} + \frac{19197799794829582300}{7750377233233651447} a^{2} + \frac{11009259228910777610}{7750377233233651447} a + \frac{5613696519333453119}{7750377233233651447} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16526624.2831 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T50):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{5})\), 10.0.100000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $5$ | 5.10.13.2 | $x^{10} + 10 x^{4} + 5$ | $10$ | $1$ | $13$ | $D_{10}$ | $[3/2]_{2}^{2}$ |
| 5.10.17.6 | $x^{10} - 20 x^{8} + 5$ | $10$ | $1$ | $17$ | $D_{10}$ | $[2]_{2}^{2}$ |