Normalized defining polynomial
\( x^{20} + 30 x^{16} - 2 x^{15} + 10 x^{13} + 275 x^{12} - 20 x^{11} + 2 x^{10} + 150 x^{9} + 790 x^{8} + 100 x^{7} + 30 x^{6} + 254 x^{5} + 425 x^{4} + 230 x^{3} + 50 x^{2} - 20 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(250000000000000000000000000000=2^{28}\cdot 5^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{6}$, $\frac{1}{2746435794793670492986} a^{19} + \frac{194966415927848752216}{1373217897396835246493} a^{18} + \frac{88742343382685123042}{1373217897396835246493} a^{17} + \frac{310215568696987247049}{1373217897396835246493} a^{16} + \frac{118300641652718023549}{1373217897396835246493} a^{15} + \frac{253753558137742935559}{2746435794793670492986} a^{14} + \frac{297276560772433635891}{2746435794793670492986} a^{13} - \frac{142390233200446524069}{1373217897396835246493} a^{12} + \frac{183738398502804114498}{1373217897396835246493} a^{11} + \frac{73030021558381526449}{2746435794793670492986} a^{10} + \frac{380736233260280249719}{2746435794793670492986} a^{9} - \frac{506334282344487611714}{1373217897396835246493} a^{8} - \frac{36844003841638819129}{249675981344879135726} a^{7} + \frac{663536098676934523107}{2746435794793670492986} a^{6} - \frac{85409255224855313705}{249675981344879135726} a^{5} - \frac{13001422336738101620}{72274626178780802447} a^{4} + \frac{562956277558979174612}{1373217897396835246493} a^{3} - \frac{485982813680113065637}{1373217897396835246493} a^{2} + \frac{519946350887456108976}{1373217897396835246493} a - \frac{131403378414044731563}{1373217897396835246493}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{93125681396339483125}{2746435794793670492986} a^{19} - \frac{38561665454154242805}{2746435794793670492986} a^{18} + \frac{4215412563479519625}{1373217897396835246493} a^{17} - \frac{1868782540638878825}{2746435794793670492986} a^{16} - \frac{1396713268349253508397}{1373217897396835246493} a^{15} - \frac{486748261465781947650}{1373217897396835246493} a^{14} + \frac{165459964725667412560}{1373217897396835246493} a^{13} - \frac{1004389177108070849625}{2746435794793670492986} a^{12} - \frac{25980705087253077942765}{2746435794793670492986} a^{11} - \frac{4373869345394606644412}{1373217897396835246493} a^{10} + \frac{1458516323508777421025}{1373217897396835246493} a^{9} - \frac{14733125454205472032655}{2746435794793670492986} a^{8} - \frac{3600908737504563308900}{124837990672439567863} a^{7} - \frac{39396828645473475395585}{2746435794793670492986} a^{6} + \frac{1851864750943251117}{124837990672439567863} a^{5} - \frac{670319392847835212575}{72274626178780802447} a^{4} - \frac{49348399492192410148305}{2746435794793670492986} a^{3} - \frac{19600058213840978743050}{1373217897396835246493} a^{2} - \frac{4942890374903875839260}{1373217897396835246493} a + \frac{515184946854607886331}{1373217897396835246493} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12937342.471 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T50):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), \(\Q(i, \sqrt{5})\), 10.6.7812500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $5$ | 5.10.15.7 | $x^{10} - 10 x^{6} - 20 x^{5} + 5$ | $10$ | $1$ | $15$ | $C_5^2 : C_4$ | $[5/4, 7/4]_{4}$ |
| 5.10.15.7 | $x^{10} - 10 x^{6} - 20 x^{5} + 5$ | $10$ | $1$ | $15$ | $C_5^2 : C_4$ | $[5/4, 7/4]_{4}$ |