/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^20 - 4*x^19 + 7*x^18 - 6*x^17 - 2*x^16 + 6*x^15 + 14*x^14 - 54*x^13 + 64*x^12 + 24*x^11 - 190*x^10 + 290*x^9 - 169*x^8 - 154*x^7 + 464*x^6 - 554*x^5 + 417*x^4 - 208*x^3 + 66*x^2 - 12*x + 1, 20, 24, [0, 10], 2500000000000000000000, [2, 5], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, a^15, 1/7*a^16 - 1/7*a^15 - 2/7*a^14 - 3/7*a^13 + 2/7*a^11 - 2/7*a^9 + 1/7*a^8 + 1/7*a^7 - 3/7*a^6 + 1/7*a^5 - 3/7*a^4 - 1/7*a^3 - 2/7*a + 3/7, 1/7*a^17 - 3/7*a^15 + 2/7*a^14 - 3/7*a^13 + 2/7*a^12 + 2/7*a^11 - 2/7*a^10 - 1/7*a^9 + 2/7*a^8 - 2/7*a^7 - 2/7*a^6 - 2/7*a^5 + 3/7*a^4 - 1/7*a^3 - 2/7*a^2 + 1/7*a + 3/7, 1/7*a^18 - 1/7*a^15 - 2/7*a^14 + 2/7*a^12 - 3/7*a^11 - 1/7*a^10 + 3/7*a^9 + 1/7*a^8 + 1/7*a^7 + 3/7*a^6 - 1/7*a^5 - 3/7*a^4 + 2/7*a^3 + 1/7*a^2 - 3/7*a + 2/7, 1/22230187*a^19 + 316742/22230187*a^18 - 1248133/22230187*a^17 + 72912/3175741*a^16 - 5356625/22230187*a^15 - 2276879/22230187*a^14 + 369525/3175741*a^13 + 9538906/22230187*a^12 + 10332540/22230187*a^11 + 1228161/3175741*a^10 - 222459/22230187*a^9 - 6008298/22230187*a^8 + 9247629/22230187*a^7 - 1567752/22230187*a^6 - 4433063/22230187*a^5 + 8436821/22230187*a^4 + 9943944/22230187*a^3 + 1386475/22230187*a^2 - 109510/22230187*a - 201610/3175741], 0, 1, [], 0, [ (18912006)/(3175741)*a^(19) - (469207801)/(22230187)*a^(18) + (696786026)/(22230187)*a^(17) - (428962951)/(22230187)*a^(16) - (520610511)/(22230187)*a^(15) + (579232476)/(22230187)*a^(14) + (2193417843)/(22230187)*a^(13) - (882894234)/(3175741)*a^(12) + (5381288298)/(22230187)*a^(11) + (6240563925)/(22230187)*a^(10) - (22659122460)/(22230187)*a^(9) + (27131369652)/(22230187)*a^(8) - (7737767500)/(22230187)*a^(7) - (26068255952)/(22230187)*a^(6) + (49358820704)/(22230187)*a^(5) - (47734643902)/(22230187)*a^(4) + (4147553537)/(3175741)*a^(3) - (10830306582)/(22230187)*a^(2) + (2158231877)/(22230187)*a - (186884032)/(22230187) , (699802)/(3175741)*a^(19) - (22620897)/(22230187)*a^(18) + (52966113)/(22230187)*a^(17) - (64451337)/(22230187)*a^(16) + (17210346)/(22230187)*a^(15) + (48013919)/(22230187)*a^(14) + (14226421)/(22230187)*a^(13) - (326622522)/(22230187)*a^(12) + (596942336)/(22230187)*a^(11) - (231490934)/(22230187)*a^(10) - (154864866)/(3175741)*a^(9) + (2486417714)/(22230187)*a^(8) - (2263334792)/(22230187)*a^(7) - (168318967)/(22230187)*a^(6) + (3514112691)/(22230187)*a^(5) - (5152925334)/(22230187)*a^(4) + (4346126546)/(22230187)*a^(3) - (2237892887)/(22230187)*a^(2) + (672207672)/(22230187)*a - (82141887)/(22230187) , (52251229)/(22230187)*a^(19) - (20797040)/(3175741)*a^(18) + (23654941)/(3175741)*a^(17) - (46149449)/(22230187)*a^(16) - (238074483)/(22230187)*a^(15) + (45270500)/(22230187)*a^(14) + (128707562)/(3175741)*a^(13) - (1755538609)/(22230187)*a^(12) + (803192232)/(22230187)*a^(11) + (3049490289)/(22230187)*a^(10) - (6612933162)/(22230187)*a^(9) + (5702780623)/(22230187)*a^(8) + (1190275056)/(22230187)*a^(7) - (9241374918)/(22230187)*a^(6) + (1768124500)/(3175741)*a^(5) - (1358243418)/(3175741)*a^(4) + (4498899555)/(22230187)*a^(3) - (1184570064)/(22230187)*a^(2) + (189536024)/(22230187)*a - (32014916)/(22230187) , (8173423)/(3175741)*a^(19) - (158673093)/(22230187)*a^(18) + (178147573)/(22230187)*a^(17) - (41944177)/(22230187)*a^(16) - (271368593)/(22230187)*a^(15) + (58237316)/(22230187)*a^(14) + (141082189)/(3175741)*a^(13) - (1930109845)/(22230187)*a^(12) + (835795157)/(22230187)*a^(11) + (3425910797)/(22230187)*a^(10) - (7323623117)/(22230187)*a^(9) + (6156286420)/(22230187)*a^(8) + (1712114974)/(22230187)*a^(7) - (10622219810)/(22230187)*a^(6) + (13771978233)/(22230187)*a^(5) - (9903826563)/(22230187)*a^(4) + (3902205409)/(22230187)*a^(3) - (275817383)/(22230187)*a^(2) - (49290959)/(3175741)*a + (78141851)/(22230187) , (9873327)/(22230187)*a^(19) - (29487821)/(22230187)*a^(18) + (40806067)/(22230187)*a^(17) - (26879376)/(22230187)*a^(16) - (31136725)/(22230187)*a^(15) + (16848252)/(22230187)*a^(14) + (147381681)/(22230187)*a^(13) - (361219735)/(22230187)*a^(12) + (296694275)/(22230187)*a^(11) + (405535329)/(22230187)*a^(10) - (1319217447)/(22230187)*a^(9) + (1605215200)/(22230187)*a^(8) - (521419289)/(22230187)*a^(7) - (1408159952)/(22230187)*a^(6) + (2897540052)/(22230187)*a^(5) - (3086956584)/(22230187)*a^(4) + (302056462)/(3175741)*a^(3) - (140107556)/(3175741)*a^(2) + (248327593)/(22230187)*a - (646188)/(3175741) , (28897571)/(22230187)*a^(19) - (93912633)/(22230187)*a^(18) + (120266788)/(22230187)*a^(17) - (51856058)/(22230187)*a^(16) - (127394468)/(22230187)*a^(15) + (11763251)/(3175741)*a^(14) + (513062146)/(22230187)*a^(13) - (1174552146)/(22230187)*a^(12) + (764344487)/(22230187)*a^(11) + (1613647156)/(22230187)*a^(10) - (4381793009)/(22230187)*a^(9) + (4429224405)/(22230187)*a^(8) - (264181599)/(22230187)*a^(7) - (5671056780)/(22230187)*a^(6) + (8837479629)/(22230187)*a^(5) - (7593446029)/(22230187)*a^(4) + (4000439329)/(22230187)*a^(3) - (1125834102)/(22230187)*a^(2) + (65609254)/(22230187)*a + (22439191)/(22230187) , (2268820)/(22230187)*a^(19) + (27086701)/(22230187)*a^(18) - (85662813)/(22230187)*a^(17) + (106961244)/(22230187)*a^(16) - (47741643)/(22230187)*a^(15) - (146071993)/(22230187)*a^(14) + (73513845)/(22230187)*a^(13) + (481426565)/(22230187)*a^(12) - (156348383)/(3175741)*a^(11) + (713690426)/(22230187)*a^(10) + (1585783509)/(22230187)*a^(9) - (4013240642)/(22230187)*a^(8) + (3940548769)/(22230187)*a^(7) + (76547561)/(22230187)*a^(6) - (5344137224)/(22230187)*a^(5) + (7842683817)/(22230187)*a^(4) - (6355450336)/(22230187)*a^(3) + (3101351468)/(22230187)*a^(2) - (791964833)/(22230187)*a + (83600929)/(22230187) , (8133218)/(3175741)*a^(19) - (199192626)/(22230187)*a^(18) + (292073094)/(22230187)*a^(17) - (176480909)/(22230187)*a^(16) - (218931267)/(22230187)*a^(15) + (228501197)/(22230187)*a^(14) + (946872977)/(22230187)*a^(13) - (2601304366)/(22230187)*a^(12) + (2203257580)/(22230187)*a^(11) + (382961071)/(3175741)*a^(10) - (9497815111)/(22230187)*a^(9) + (11275402905)/(22230187)*a^(8) - (3160444828)/(22230187)*a^(7) - (10788650057)/(22230187)*a^(6) + (20521079744)/(22230187)*a^(5) - (19997248903)/(22230187)*a^(4) + (12492825309)/(22230187)*a^(3) - (4946627349)/(22230187)*a^(2) + (1140590520)/(22230187)*a - (19179999)/(3175741) , (86489267)/(22230187)*a^(19) - (279494459)/(22230187)*a^(18) + (54063787)/(3175741)*a^(17) - (195232594)/(22230187)*a^(16) - (353777804)/(22230187)*a^(15) + (242668081)/(22230187)*a^(14) + (1459976232)/(22230187)*a^(13) - (3547291975)/(22230187)*a^(12) + (368115137)/(3175741)*a^(11) + (4435405692)/(22230187)*a^(10) - (1868254249)/(3175741)*a^(9) + (14198364703)/(22230187)*a^(8) - (2274031971)/(22230187)*a^(7) - (15932916602)/(22230187)*a^(6) + (27078442070)/(22230187)*a^(5) - (24882965151)/(22230187)*a^(4) + (14658774374)/(22230187)*a^(3) - (5426156740)/(22230187)*a^(2) + (1208261745)/(22230187)*a - (150140205)/(22230187) ], 397.737246993, [[x^2 - x - 1, 1], [x^2 + 1, 1], [x^2 + 5, 1], [x^4 + 3*x^2 + 1, 1], [x^10 - 4*x^9 + 9*x^8 - 14*x^7 + 15*x^6 - 10*x^5 + 3*x^4 + 2*x^3 - 2*x^2 + 1, 1]]]