Normalized defining polynomial
\( x^{20} + 8 x^{18} - 66 x^{16} - 497 x^{14} + 1260 x^{12} + 12574 x^{10} + 13313 x^{8} - 32876 x^{6} - 2915 x^{4} + 168540 x^{2} + 148877 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24904860168174943560148881047552=2^{16}\cdot 53^{7}\cdot 4241^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53, 4241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{53} a^{14} - \frac{19}{53} a^{12} + \frac{23}{53} a^{10} - \frac{5}{53} a^{8} + \frac{17}{53} a^{6} - \frac{22}{53} a^{4} + \frac{21}{53} a^{2}$, $\frac{1}{53} a^{15} - \frac{19}{53} a^{13} + \frac{23}{53} a^{11} - \frac{5}{53} a^{9} + \frac{17}{53} a^{7} - \frac{22}{53} a^{5} + \frac{21}{53} a^{3}$, $\frac{1}{53} a^{16} - \frac{20}{53} a^{12} + \frac{8}{53} a^{10} - \frac{25}{53} a^{8} - \frac{17}{53} a^{6} - \frac{26}{53} a^{4} - \frac{25}{53} a^{2}$, $\frac{1}{53} a^{17} - \frac{20}{53} a^{13} + \frac{8}{53} a^{11} - \frac{25}{53} a^{9} - \frac{17}{53} a^{7} - \frac{26}{53} a^{5} - \frac{25}{53} a^{3}$, $\frac{1}{59012061786804851266} a^{18} - \frac{1}{106} a^{17} + \frac{108407757235566848}{29506030893402425633} a^{16} - \frac{1}{106} a^{15} - \frac{113949553643975885}{59012061786804851266} a^{14} - \frac{7}{53} a^{13} - \frac{1107397553144197021}{29506030893402425633} a^{12} + \frac{11}{53} a^{11} + \frac{11166388502797602280}{29506030893402425633} a^{10} + \frac{15}{53} a^{9} - \frac{14109258731055841730}{29506030893402425633} a^{8} + \frac{11807534131675768201}{59012061786804851266} a^{6} - \frac{5}{106} a^{5} + \frac{2824437873103145018}{29506030893402425633} a^{4} - \frac{49}{106} a^{3} - \frac{104290395165271394}{556717564026460861} a^{2} - \frac{1}{2} a + \frac{7970762959037891}{21008209963262674}$, $\frac{1}{59012061786804851266} a^{19} - \frac{339902049555327165}{59012061786804851266} a^{17} - \frac{1}{106} a^{16} + \frac{221384005191242488}{29506030893402425633} a^{15} - \frac{1}{106} a^{14} + \frac{13923976675570246226}{29506030893402425633} a^{13} - \frac{7}{53} a^{12} + \frac{588754786294845921}{29506030893402425633} a^{11} + \frac{11}{53} a^{10} - \frac{8542083090791233120}{29506030893402425633} a^{9} + \frac{15}{53} a^{8} - \frac{28276130478229413791}{59012061786804851266} a^{7} - \frac{21630284891090292153}{59012061786804851266} a^{5} - \frac{5}{106} a^{4} - \frac{282109525201962147}{1113435128052921722} a^{3} - \frac{49}{106} a^{2} - \frac{1266671011296723}{10504104981631337} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14835703.8542 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n804 are not computed |
| Character table for t20n804 is not computed |
Intermediate fields
| 5.5.224773.1, 10.6.50522901529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $53$ | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.4.2.2 | $x^{4} - 53 x^{2} + 14045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 4241 | Data not computed | ||||||