Properties

Label 20.0.24797634275...1744.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{16}\cdot 13^{14}\cdot 31^{2}$
Root discriminant $14.78$
Ramified primes $2, 13, 31$
Class number $1$
Class group Trivial
Galois group 20T140

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 12, 28, 52, 84, 52, -84, -86, 106, 106, -79, -51, 73, 8, -63, -1, 35, 4, -9, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 9*x^18 + 4*x^17 + 35*x^16 - x^15 - 63*x^14 + 8*x^13 + 73*x^12 - 51*x^11 - 79*x^10 + 106*x^9 + 106*x^8 - 86*x^7 - 84*x^6 + 52*x^5 + 84*x^4 + 52*x^3 + 28*x^2 + 12*x + 4)
 
gp: K = bnfinit(x^20 - x^19 - 9*x^18 + 4*x^17 + 35*x^16 - x^15 - 63*x^14 + 8*x^13 + 73*x^12 - 51*x^11 - 79*x^10 + 106*x^9 + 106*x^8 - 86*x^7 - 84*x^6 + 52*x^5 + 84*x^4 + 52*x^3 + 28*x^2 + 12*x + 4, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - 9 x^{18} + 4 x^{17} + 35 x^{16} - x^{15} - 63 x^{14} + 8 x^{13} + 73 x^{12} - 51 x^{11} - 79 x^{10} + 106 x^{9} + 106 x^{8} - 86 x^{7} - 84 x^{6} + 52 x^{5} + 84 x^{4} + 52 x^{3} + 28 x^{2} + 12 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(247976342759474248351744=2^{16}\cdot 13^{14}\cdot 31^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{1357171156268} a^{19} - \frac{74531944751}{678585578134} a^{18} - \frac{22766904837}{339292789067} a^{17} + \frac{57896833095}{678585578134} a^{16} - \frac{179340521253}{1357171156268} a^{15} + \frac{67884207981}{339292789067} a^{14} - \frac{100583633681}{678585578134} a^{13} + \frac{14716893101}{678585578134} a^{12} + \frac{86779917969}{1357171156268} a^{11} + \frac{11039750408}{339292789067} a^{10} + \frac{84682723393}{339292789067} a^{9} - \frac{283468733867}{678585578134} a^{8} - \frac{380354642}{4778771677} a^{7} - \frac{968878113}{678585578134} a^{6} - \frac{39543237243}{678585578134} a^{5} + \frac{156025166087}{339292789067} a^{4} - \frac{106226095443}{339292789067} a^{3} - \frac{160101173077}{339292789067} a^{2} - \frac{127356634154}{339292789067} a - \frac{121953955450}{339292789067}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2987.11435318 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T140:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 640
The 22 conjugacy class representatives for t20n140
Character table for t20n140 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 5.1.35152.1, 10.0.38305556224.1, 10.0.497972230912.1, 10.2.16063620352.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.8.1$x^{10} - 2 x^{5} + 4$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$
2.10.8.1$x^{10} - 2 x^{5} + 4$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$31$31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.8.0.1$x^{8} - x + 22$$1$$8$$0$$C_8$$[\ ]^{8}$
31.8.0.1$x^{8} - x + 22$$1$$8$$0$$C_8$$[\ ]^{8}$