Normalized defining polynomial
\( x^{20} + 45 x^{18} + 1200 x^{16} + 27204 x^{14} + 502866 x^{12} + 6788948 x^{10} + 63737356 x^{8} + 405259009 x^{6} + 1670980114 x^{4} + 4048358601 x^{2} + 4390785169 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2452721427113262984247045999377966432256=2^{20}\cdot 11^{18}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1276=2^{2}\cdot 11\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1276}(1,·)$, $\chi_{1276}(581,·)$, $\chi_{1276}(1217,·)$, $\chi_{1276}(523,·)$, $\chi_{1276}(463,·)$, $\chi_{1276}(465,·)$, $\chi_{1276}(1043,·)$, $\chi_{1276}(57,·)$, $\chi_{1276}(985,·)$, $\chi_{1276}(987,·)$, $\chi_{1276}(927,·)$, $\chi_{1276}(929,·)$, $\chi_{1276}(871,·)$, $\chi_{1276}(1159,·)$, $\chi_{1276}(173,·)$, $\chi_{1276}(175,·)$, $\chi_{1276}(115,·)$, $\chi_{1276}(755,·)$, $\chi_{1276}(697,·)$, $\chi_{1276}(637,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{23} a^{13} + \frac{7}{23} a^{11} - \frac{2}{23} a^{9} + \frac{3}{23} a^{7} - \frac{10}{23} a^{5} + \frac{6}{23} a^{3} + \frac{4}{23} a$, $\frac{1}{23} a^{14} + \frac{7}{23} a^{12} - \frac{2}{23} a^{10} + \frac{3}{23} a^{8} - \frac{10}{23} a^{6} + \frac{6}{23} a^{4} + \frac{4}{23} a^{2}$, $\frac{1}{23} a^{15} - \frac{5}{23} a^{11} - \frac{6}{23} a^{9} - \frac{8}{23} a^{7} + \frac{7}{23} a^{5} + \frac{8}{23} a^{3} - \frac{5}{23} a$, $\frac{1}{23} a^{16} - \frac{5}{23} a^{12} - \frac{6}{23} a^{10} - \frac{8}{23} a^{8} + \frac{7}{23} a^{6} + \frac{8}{23} a^{4} - \frac{5}{23} a^{2}$, $\frac{1}{989} a^{17} - \frac{6}{989} a^{15} + \frac{1}{989} a^{13} + \frac{20}{989} a^{11} - \frac{7}{989} a^{9} - \frac{180}{989} a^{7} + \frac{412}{989} a^{5} - \frac{109}{989} a^{3} + \frac{169}{989} a$, $\frac{1}{7851584364930626674236070849} a^{18} - \frac{157169494572545734131121157}{7851584364930626674236070849} a^{16} - \frac{102830302797279417131875241}{7851584364930626674236070849} a^{14} - \frac{648969128237653398221499568}{7851584364930626674236070849} a^{12} + \frac{1610465389074409850540062982}{7851584364930626674236070849} a^{10} - \frac{2470484219719068551957020753}{7851584364930626674236070849} a^{8} + \frac{1035230435123630316966465861}{7851584364930626674236070849} a^{6} - \frac{1520557742802487353436121733}{7851584364930626674236070849} a^{4} - \frac{1911515080531662434230212931}{7851584364930626674236070849} a^{2} - \frac{3882224529773289374737360}{7938912401345426364242741}$, $\frac{1}{526056152450351987173816746883} a^{19} + \frac{231837213093380157716773152}{526056152450351987173816746883} a^{17} + \frac{11218058781521298578278273425}{526056152450351987173816746883} a^{15} + \frac{7932995177616752501524903453}{526056152450351987173816746883} a^{13} - \frac{135010278125679032451713266887}{526056152450351987173816746883} a^{11} - \frac{221282787825601710003215448195}{526056152450351987173816746883} a^{9} + \frac{89752576520158769937379096536}{526056152450351987173816746883} a^{7} + \frac{211663056970526246805574202340}{526056152450351987173816746883} a^{5} - \frac{66502506377878051333709153707}{526056152450351987173816746883} a^{3} - \frac{20709708912804814215631073665}{526056152450351987173816746883} a$
Class group and class number
$C_{11}\times C_{55}\times C_{1650}$, which has order $998250$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.490766 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-319}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-29}) \), \(\Q(\sqrt{11}, \sqrt{-29})\), \(\Q(\zeta_{11})^+\), 10.0.48364216424306959.3, \(\Q(\zeta_{44})^+\), 10.0.4502268874408211456.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 29 | Data not computed | ||||||