Properties

Label 20.0.24330629296...8896.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{40}\cdot 38569^{4}$
Root discriminant $33.06$
Ramified primes $2, 38569$
Class number $12$ (GRH)
Class group $[12]$ (GRH)
Galois group 20T368

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![121, 0, 456, 0, 282, 0, -764, 0, 607, 0, -264, 0, 235, 0, -50, 0, -1, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^16 - 50*x^14 + 235*x^12 - 264*x^10 + 607*x^8 - 764*x^6 + 282*x^4 + 456*x^2 + 121)
 
gp: K = bnfinit(x^20 - x^16 - 50*x^14 + 235*x^12 - 264*x^10 + 607*x^8 - 764*x^6 + 282*x^4 + 456*x^2 + 121, 1)
 

Normalized defining polynomial

\( x^{20} - x^{16} - 50 x^{14} + 235 x^{12} - 264 x^{10} + 607 x^{8} - 764 x^{6} + 282 x^{4} + 456 x^{2} + 121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2433062929616749991460283088896=2^{40}\cdot 38569^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.06$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 38569$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11} a^{17} - \frac{3}{11} a^{15} - \frac{3}{11} a^{13} + \frac{3}{11} a^{11} - \frac{5}{11} a^{9} + \frac{4}{11} a^{7} + \frac{1}{11} a^{5} + \frac{3}{11} a^{3} - \frac{2}{11} a$, $\frac{1}{3292792239062117} a^{18} + \frac{955142129492680}{3292792239062117} a^{16} + \frac{657054976653149}{3292792239062117} a^{14} - \frac{631218293848436}{3292792239062117} a^{12} + \frac{70236296643310}{3292792239062117} a^{10} + \frac{1134991449210073}{3292792239062117} a^{8} - \frac{3688133863478}{25927497945371} a^{6} - \frac{352355532624840}{3292792239062117} a^{4} - \frac{1640808241599100}{3292792239062117} a^{2} + \frac{322434529010}{299344749005647}$, $\frac{1}{3292792239062117} a^{19} + \frac{57107882475739}{3292792239062117} a^{17} + \frac{5305952603805}{299344749005647} a^{15} - \frac{1229907791859730}{3292792239062117} a^{13} + \frac{668925794654604}{3292792239062117} a^{11} - \frac{960421793829456}{3292792239062117} a^{9} - \frac{6045179131239}{25927497945371} a^{7} - \frac{1250389779641781}{3292792239062117} a^{5} - \frac{1042118743587806}{3292792239062117} a^{3} - \frac{1493176965209125}{3292792239062117} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{12}$, which has order $12$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 822807.224289 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T368:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7680
The 72 conjugacy class representatives for t20n368 are not computed
Character table for t20n368 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 5.5.38569.1, 10.10.48744620392448.2, 10.0.1523269387264.1, 10.0.48744620392448.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
38569Data not computed