Normalized defining polynomial
\( x^{20} - 4 x^{19} + 23 x^{18} - 86 x^{17} + 286 x^{16} - 841 x^{15} + 1894 x^{14} - 3550 x^{13} + 5536 x^{12} - 4335 x^{11} + 6012 x^{10} + 9176 x^{9} + 14031 x^{8} + 28625 x^{7} + 71096 x^{6} + 45116 x^{5} + 93564 x^{4} + 66361 x^{3} + 5468 x^{2} + 9565 x + 10555 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2421769784649371094992432861328125=5^{13}\cdot 269^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 269$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{15} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{16} - \frac{1}{5} a^{14} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{2687648728310163765350177756610247989409047922925} a^{19} - \frac{136446966813494722383671227297185413056462480866}{2687648728310163765350177756610247989409047922925} a^{18} + \frac{23489968815945772534535096338693538869031778189}{537529745662032753070035551322049597881809584585} a^{17} + \frac{562863425247143057460649532364248059759338745149}{2687648728310163765350177756610247989409047922925} a^{16} + \frac{420493041558183845879549594408394246778417597103}{2687648728310163765350177756610247989409047922925} a^{15} + \frac{989996026218356635032032742189583235139396320598}{2687648728310163765350177756610247989409047922925} a^{14} - \frac{1106133287094533485478608105386432132021562782062}{2687648728310163765350177756610247989409047922925} a^{13} - \frac{1325671827624762351782073570280732573429372785596}{2687648728310163765350177756610247989409047922925} a^{12} + \frac{1112227743205982289532696743079534806006324350933}{2687648728310163765350177756610247989409047922925} a^{11} + \frac{1243470746611956346215129550044064660763052206044}{2687648728310163765350177756610247989409047922925} a^{10} + \frac{736304165750123263058627844060019696519295329594}{2687648728310163765350177756610247989409047922925} a^{9} - \frac{618717073730731627135369450865350511236605083972}{2687648728310163765350177756610247989409047922925} a^{8} + \frac{209205266052641991242064397259244196812093701891}{537529745662032753070035551322049597881809584585} a^{7} + \frac{3728027912237041276686756793183001614952725504}{537529745662032753070035551322049597881809584585} a^{6} + \frac{1180199084202430570650654530824715579639462876521}{2687648728310163765350177756610247989409047922925} a^{5} - \frac{305898527009988787865825939070306791284946047716}{2687648728310163765350177756610247989409047922925} a^{4} - \frac{733535881768292396030265792849169395132933089754}{2687648728310163765350177756610247989409047922925} a^{3} - \frac{102012386516206484657228925146146257184752231211}{2687648728310163765350177756610247989409047922925} a^{2} + \frac{37019118326887723340418850284188889804104636559}{107505949132406550614007110264409919576361916917} a - \frac{219958969270494772869064075029992536714567744877}{537529745662032753070035551322049597881809584585}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 472140760.692 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 480 |
| The 19 conjugacy class representatives for $C_4:S_5$ |
| Character table for $C_4:S_5$ |
Intermediate fields
| \(\Q(\sqrt{269}) \), 4.0.361805.1, 5.1.33625.1, 10.2.22008043005453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 269 | Data not computed | ||||||