Normalized defining polynomial
\( x^{20} + 20 x^{18} + 170 x^{16} - 8 x^{15} + 800 x^{14} - 120 x^{13} + 2275 x^{12} - 720 x^{11} + 4047 x^{10} - 2200 x^{9} + 4720 x^{8} - 3600 x^{7} + 4145 x^{6} - 3014 x^{5} + 2975 x^{4} - 1070 x^{3} + 1175 x^{2} - 70 x + 199 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24156109058298170566558837890625=5^{30}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{930} a^{15} + \frac{1}{62} a^{13} - \frac{13}{186} a^{11} + \frac{113}{930} a^{10} + \frac{55}{186} a^{9} + \frac{20}{93} a^{8} - \frac{65}{186} a^{7} + \frac{13}{31} a^{6} + \frac{10}{31} a^{5} + \frac{15}{62} a^{4} + \frac{43}{186} a^{3} + \frac{19}{93} a^{2} + \frac{40}{93} a - \frac{127}{465}$, $\frac{1}{930} a^{16} + \frac{1}{62} a^{14} - \frac{13}{186} a^{12} - \frac{7}{155} a^{11} - \frac{19}{93} a^{10} + \frac{20}{93} a^{9} - \frac{65}{186} a^{8} - \frac{77}{186} a^{7} - \frac{1}{93} a^{6} + \frac{38}{93} a^{5} + \frac{37}{93} a^{4} - \frac{43}{93} a^{3} + \frac{3}{31} a^{2} + \frac{61}{155} a + \frac{1}{6}$, $\frac{1}{930} a^{17} + \frac{2}{93} a^{13} - \frac{7}{155} a^{12} + \frac{1}{93} a^{11} - \frac{10}{93} a^{10} - \frac{11}{93} a^{9} + \frac{5}{186} a^{8} - \frac{25}{93} a^{7} + \frac{11}{93} a^{6} - \frac{17}{62} a^{5} + \frac{38}{93} a^{4} - \frac{7}{186} a^{3} + \frac{51}{155} a^{2} + \frac{3}{62} a - \frac{13}{186}$, $\frac{1}{4650} a^{18} + \frac{1}{2325} a^{17} - \frac{1}{2325} a^{16} - \frac{1}{4650} a^{15} - \frac{11}{310} a^{14} + \frac{23}{775} a^{13} + \frac{61}{775} a^{12} + \frac{112}{2325} a^{11} - \frac{353}{4650} a^{10} + \frac{64}{155} a^{9} + \frac{151}{310} a^{8} + \frac{109}{310} a^{7} + \frac{83}{186} a^{6} + \frac{103}{930} a^{5} + \frac{71}{186} a^{4} - \frac{34}{775} a^{3} - \frac{111}{1550} a^{2} - \frac{369}{1550} a - \frac{71}{150}$, $\frac{1}{4650} a^{19} - \frac{1}{4650} a^{17} - \frac{1}{2325} a^{16} + \frac{1}{2325} a^{15} - \frac{191}{2325} a^{14} + \frac{34}{465} a^{13} + \frac{191}{2325} a^{12} + \frac{359}{4650} a^{11} - \frac{377}{2325} a^{10} - \frac{23}{93} a^{9} - \frac{139}{930} a^{8} - \frac{67}{465} a^{7} + \frac{164}{465} a^{6} - \frac{117}{310} a^{5} - \frac{743}{1550} a^{4} - \frac{40}{93} a^{3} + \frac{989}{4650} a^{2} - \frac{489}{1550} a - \frac{704}{2325}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19342033.3142 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T50):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-11})\), 10.6.3692626953125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.15.8 | $x^{10} - 10 x^{6} - 10 x^{5} + 5$ | $10$ | $1$ | $15$ | $C_5^2 : C_4$ | $[5/4, 7/4]_{4}$ |
| 5.10.15.8 | $x^{10} - 10 x^{6} - 10 x^{5} + 5$ | $10$ | $1$ | $15$ | $C_5^2 : C_4$ | $[5/4, 7/4]_{4}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |