Normalized defining polynomial
\( x^{20} - 10 x^{19} + 83 x^{18} - 462 x^{17} + 2472 x^{16} - 10596 x^{15} + 44444 x^{14} - 155870 x^{13} + 544146 x^{12} - 1609742 x^{11} + 4807824 x^{10} - 12039754 x^{9} + 31117982 x^{8} - 65291864 x^{7} + 146223201 x^{6} - 247872072 x^{5} + 479298068 x^{4} - 603969256 x^{3} + 996273093 x^{2} - 727361688 x + 1039093441 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(241516388741909997129558450172507193344=2^{20}\cdot 11^{18}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1012=2^{2}\cdot 11\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1012}(1,·)$, $\chi_{1012}(139,·)$, $\chi_{1012}(967,·)$, $\chi_{1012}(137,·)$, $\chi_{1012}(459,·)$, $\chi_{1012}(783,·)$, $\chi_{1012}(597,·)$, $\chi_{1012}(919,·)$, $\chi_{1012}(93,·)$, $\chi_{1012}(415,·)$, $\chi_{1012}(229,·)$, $\chi_{1012}(873,·)$, $\chi_{1012}(875,·)$, $\chi_{1012}(45,·)$, $\chi_{1012}(1011,·)$, $\chi_{1012}(183,·)$, $\chi_{1012}(185,·)$, $\chi_{1012}(553,·)$, $\chi_{1012}(827,·)$, $\chi_{1012}(829,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{44144469852373879247009472833} a^{18} - \frac{9}{44144469852373879247009472833} a^{17} + \frac{15486781485494630746866128821}{44144469852373879247009472833} a^{16} + \frac{8539157673164591766099388135}{44144469852373879247009472833} a^{15} + \frac{7555701521887606058136504798}{44144469852373879247009472833} a^{14} - \frac{3675055597911141702152198914}{44144469852373879247009472833} a^{13} - \frac{5283666047110357408962494231}{44144469852373879247009472833} a^{12} + \frac{4492459734570179845676249316}{44144469852373879247009472833} a^{11} + \frac{13802313910762808739856764773}{44144469852373879247009472833} a^{10} - \frac{1391310649421742353360107185}{44144469852373879247009472833} a^{9} - \frac{15170082429589334414471978490}{44144469852373879247009472833} a^{8} - \frac{2921827663049896385783975151}{44144469852373879247009472833} a^{7} - \frac{5491243656736881014111328245}{44144469852373879247009472833} a^{6} - \frac{9944136898344417747458747125}{44144469852373879247009472833} a^{5} + \frac{4591810116442709602000718337}{44144469852373879247009472833} a^{4} - \frac{9086924165373554116538213868}{44144469852373879247009472833} a^{3} - \frac{15603343142774598452804291403}{44144469852373879247009472833} a^{2} + \frac{14099365807989396837007580440}{44144469852373879247009472833} a - \frac{5323247695048922421068872185}{44144469852373879247009472833}$, $\frac{1}{1335676178354856650579097575854455523} a^{19} + \frac{15128456}{1335676178354856650579097575854455523} a^{18} + \frac{263645577842558837607319066662047691}{1335676178354856650579097575854455523} a^{17} - \frac{3181904720120872104362241015995282}{1335676178354856650579097575854455523} a^{16} - \frac{172288867895442155822397381201242180}{1335676178354856650579097575854455523} a^{15} + \frac{1679377122026519250593749929066669}{19935465348579950008643247400812769} a^{14} - \frac{298624209635560421438247781200908825}{1335676178354856650579097575854455523} a^{13} - \frac{190926943378748793575503051315186160}{1335676178354856650579097575854455523} a^{12} + \frac{485511344152173621410949664224364328}{1335676178354856650579097575854455523} a^{11} - \frac{660508166364001595770081907460271399}{1335676178354856650579097575854455523} a^{10} + \frac{587413932896728726530085090742476174}{1335676178354856650579097575854455523} a^{9} + \frac{482390520021879910446615910672887205}{1335676178354856650579097575854455523} a^{8} + \frac{572996775409580843390610995306400088}{1335676178354856650579097575854455523} a^{7} + \frac{198951323978549366378769960095663386}{1335676178354856650579097575854455523} a^{6} - \frac{577527865479640691473635929465256359}{1335676178354856650579097575854455523} a^{5} - \frac{580548723178778758610374090186093917}{1335676178354856650579097575854455523} a^{4} + \frac{636422513505635199877160776131799166}{1335676178354856650579097575854455523} a^{3} + \frac{276596568644033280440629121989726534}{1335676178354856650579097575854455523} a^{2} - \frac{19447179369923963404607419562851606}{1335676178354856650579097575854455523} a + \frac{30609038272576519793875867112468582}{1335676178354856650579097575854455523}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{1212}$, which has order $155136$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.490766 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-253}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{11}, \sqrt{-23})\), \(\Q(\zeta_{11})^+\), 10.0.1379687283212183.1, 10.0.15540797558102029312.1, \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 11 | Data not computed | ||||||
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |