Normalized defining polynomial
\( x^{20} - 10 x^{19} + 85 x^{18} - 480 x^{17} + 2590 x^{16} - 11130 x^{15} + 46735 x^{14} - 164095 x^{13} + 571270 x^{12} - 1685235 x^{11} + 4996534 x^{10} - 12451945 x^{9} + 31777520 x^{8} - 66095535 x^{7} + 145105405 x^{6} - 242935385 x^{5} + 454340820 x^{4} - 560610915 x^{3} + 878529790 x^{2} - 617763370 x + 795562849 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24113403175520361401140689849853515625=5^{34}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(575=5^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{575}(1,·)$, $\chi_{575}(139,·)$, $\chi_{575}(321,·)$, $\chi_{575}(459,·)$, $\chi_{575}(461,·)$, $\chi_{575}(206,·)$, $\chi_{575}(24,·)$, $\chi_{575}(344,·)$, $\chi_{575}(346,·)$, $\chi_{575}(91,·)$, $\chi_{575}(484,·)$, $\chi_{575}(229,·)$, $\chi_{575}(551,·)$, $\chi_{575}(231,·)$, $\chi_{575}(369,·)$, $\chi_{575}(114,·)$, $\chi_{575}(116,·)$, $\chi_{575}(254,·)$, $\chi_{575}(436,·)$, $\chi_{575}(574,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} + \frac{3}{7} a^{16} - \frac{2}{7} a^{15} + \frac{3}{7} a^{14} - \frac{2}{7} a^{13} - \frac{1}{7} a^{12} - \frac{2}{7} a^{11} - \frac{2}{7} a^{10} - \frac{3}{7} a^{9} + \frac{1}{7} a^{8} - \frac{3}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{3}{7} a^{3} - \frac{2}{7} a^{2} + \frac{2}{7}$, $\frac{1}{7} a^{18} + \frac{3}{7} a^{16} + \frac{2}{7} a^{15} + \frac{3}{7} a^{14} - \frac{2}{7} a^{13} + \frac{1}{7} a^{12} - \frac{3}{7} a^{11} + \frac{3}{7} a^{10} + \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{1}{7} a^{2} + \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{626680933233457107588108567090522517663269742044188991006504757} a^{19} + \frac{914386474963287950911058132894266048055687828393535668172539}{14573975191475746688095548071872616689843482373120674209453599} a^{18} - \frac{22184573114812850991036753899713992594613678108415277759104991}{626680933233457107588108567090522517663269742044188991006504757} a^{17} + \frac{154949490425964392108925650233687834236238975984061072793045363}{626680933233457107588108567090522517663269742044188991006504757} a^{16} - \frac{37512766210030310248238336123161174042844773950947028055210262}{89525847604779586798301223870074645380467106006312713000929251} a^{15} + \frac{13725484866595696131800410179560566700292190681064088244576533}{626680933233457107588108567090522517663269742044188991006504757} a^{14} - \frac{113490473318278703659914852014220120551559777294751952542800596}{626680933233457107588108567090522517663269742044188991006504757} a^{13} - \frac{211421451775828243665406621455508600306177020741781756800332990}{626680933233457107588108567090522517663269742044188991006504757} a^{12} - \frac{161569415193658717788692957959882588351019006715883735159816455}{626680933233457107588108567090522517663269742044188991006504757} a^{11} + \frac{247738708693147511759144508420939976470674730872448507483759810}{626680933233457107588108567090522517663269742044188991006504757} a^{10} - \frac{75786148409112786278305064880736473884907036708242273344792380}{626680933233457107588108567090522517663269742044188991006504757} a^{9} - \frac{295365743829644815130182803679715353675332482111795999238882236}{626680933233457107588108567090522517663269742044188991006504757} a^{8} + \frac{273781751800575164230010952720451894427434531991318611215395051}{626680933233457107588108567090522517663269742044188991006504757} a^{7} + \frac{25716017613572930746232358279749968751440571464757040359190487}{89525847604779586798301223870074645380467106006312713000929251} a^{6} + \frac{4820360740663505016719756490554767068672584322070111979266846}{14573975191475746688095548071872616689843482373120674209453599} a^{5} - \frac{152661142256400742351973698873538301652088076055662622792172863}{626680933233457107588108567090522517663269742044188991006504757} a^{4} + \frac{10161340139521122772908070180945103134413065521559380036720642}{89525847604779586798301223870074645380467106006312713000929251} a^{3} - \frac{8461210939768149807514228087660152043144317347111969245598780}{626680933233457107588108567090522517663269742044188991006504757} a^{2} - \frac{247777498889584688973283522301105241453831963238534545910636268}{626680933233457107588108567090522517663269742044188991006504757} a - \frac{91762409306501322537579107376704608868711000410799751024012698}{626680933233457107588108567090522517663269742044188991006504757}$
Class group and class number
$C_{112053}$, which has order $112053$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-115}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{5}, \sqrt{-23})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.4910540008544921875.3, 10.0.982108001708984375.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||