Normalized defining polynomial
\( x^{20} - 10 x^{19} + 54 x^{18} - 162 x^{17} + 177 x^{16} + 868 x^{15} - 5252 x^{14} + 14484 x^{13} - 20590 x^{12} - 5896 x^{11} + 114696 x^{10} - 340360 x^{9} + 652002 x^{8} - 935412 x^{7} + 1058596 x^{6} - 966276 x^{5} + 721101 x^{4} - 426750 x^{3} + 192610 x^{2} - 57606 x + 9837 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(240980311683367214105123046293504=2^{30}\cdot 71^{6}\cdot 281^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 71, 281$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} - \frac{1}{8} a^{6} + \frac{1}{8} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{11} - \frac{1}{8} a^{7} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{8} + \frac{1}{16}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{9} + \frac{1}{16} a$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{10} + \frac{1}{16} a^{2}$, $\frac{1}{125550240902293816803437539548663024} a^{19} - \frac{1415108234465583562336262123947265}{62775120451146908401718769774331512} a^{18} + \frac{390499885789047203509190216926411}{20925040150382302800572923258110504} a^{17} - \frac{4801453542397672622079870602683}{871876672932595950023871802421271} a^{16} + \frac{312127517845382725251386727655921}{20925040150382302800572923258110504} a^{15} - \frac{367950357514686892984597986231329}{31387560225573454200859384887165756} a^{14} - \frac{295508991761018253483516255668921}{7846890056393363550214846221791439} a^{13} + \frac{550023105941801440386090467778355}{20925040150382302800572923258110504} a^{12} - \frac{685771267243770469908152784162533}{15693780112786727100429692443582878} a^{11} + \frac{826602208656455310671196297625751}{31387560225573454200859384887165756} a^{10} - \frac{109414781742814256923357682996653}{2615630018797787850071615407263813} a^{9} + \frac{6755970128656672474085124558823807}{62775120451146908401718769774331512} a^{8} - \frac{4173545151098944348357662676540129}{20925040150382302800572923258110504} a^{7} + \frac{2110043938246131378317780653473925}{10462520075191151400286461629055252} a^{6} + \frac{726118471857878803058200543213534}{7846890056393363550214846221791439} a^{5} - \frac{154089282972510511515181413034747}{20925040150382302800572923258110504} a^{4} - \frac{5187216593697199497305543373656051}{41850080300764605601145846516221008} a^{3} + \frac{1211801326423320337665899291396981}{20925040150382302800572923258110504} a^{2} - \frac{10655691190931816419557845105416561}{62775120451146908401718769774331512} a + \frac{6438490202435191390317871760602123}{20925040150382302800572923258110504}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78421834.0612 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.3.19951.1, 10.4.28939274722304.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $71$ | 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 71.4.3.1 | $x^{4} + 142$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 281 | Data not computed | ||||||