Normalized defining polynomial
\( x^{20} - 5 x^{19} + 20 x^{18} - 65 x^{17} + 200 x^{16} - 482 x^{15} + 1015 x^{14} - 2005 x^{13} + 3375 x^{12} - 5715 x^{11} + 8584 x^{10} - 12320 x^{9} + 16915 x^{8} - 25850 x^{7} + 28430 x^{6} - 32983 x^{5} + 54230 x^{4} + 1020 x^{3} + 71185 x^{2} + 31085 x + 14741 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24032520061123371124267578125=5^{23}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{14} - \frac{1}{12} a^{13} + \frac{1}{12} a^{12} - \frac{1}{4} a^{10} + \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{6} a^{6} - \frac{5}{12} a^{5} + \frac{1}{4} a^{4} - \frac{5}{12} a^{3} - \frac{1}{12} a^{2} - \frac{5}{12} a - \frac{5}{12}$, $\frac{1}{12} a^{17} - \frac{1}{12} a^{15} - \frac{1}{12} a^{14} + \frac{1}{12} a^{13} - \frac{1}{4} a^{11} + \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{6} a^{7} - \frac{5}{12} a^{6} + \frac{1}{4} a^{5} - \frac{5}{12} a^{4} - \frac{1}{12} a^{3} - \frac{5}{12} a^{2} - \frac{5}{12} a$, $\frac{1}{1293072} a^{18} - \frac{46247}{1293072} a^{17} + \frac{3747}{431024} a^{16} - \frac{421}{7347} a^{15} - \frac{80437}{1293072} a^{14} - \frac{6487}{107756} a^{13} - \frac{38567}{323268} a^{12} + \frac{249655}{1293072} a^{11} - \frac{213575}{1293072} a^{10} - \frac{1877}{14694} a^{9} - \frac{931}{117552} a^{8} + \frac{1043}{58776} a^{7} - \frac{35887}{80817} a^{6} - \frac{78395}{161634} a^{5} + \frac{44815}{215512} a^{4} + \frac{60949}{1293072} a^{3} - \frac{34675}{646536} a^{2} + \frac{7181}{41712} a - \frac{394127}{1293072}$, $\frac{1}{19646785863110168860922547228616072512} a^{19} + \frac{998513483590752582230716487047}{9823392931555084430461273614308036256} a^{18} - \frac{12668176495129279632331959812797711}{316883642953389820337460439171226976} a^{17} + \frac{57349800536460378462173660228793131}{1786071442100924441902049748056006592} a^{16} - \frac{413310082475749001842780492782209679}{6548928621036722953640849076205357504} a^{15} + \frac{1189342195031174692466952144990496199}{19646785863110168860922547228616072512} a^{14} + \frac{119468873213068033430916505955863723}{4911696465777542215230636807154018128} a^{13} - \frac{2981425902820364327369885562469033537}{19646785863110168860922547228616072512} a^{12} - \frac{1196387926295278108819715580667443373}{4911696465777542215230636807154018128} a^{11} + \frac{4204153352089079104780335367006963}{1786071442100924441902049748056006592} a^{10} - \frac{350990439401021994203449996737526607}{1786071442100924441902049748056006592} a^{9} - \frac{27900174606624422017908653838624431}{595357147366974813967349916018668864} a^{8} - \frac{1390691069236268837689397365772250061}{9823392931555084430461273614308036256} a^{7} - \frac{1141976273619128185847956655665600615}{2455848232888771107615318403577009064} a^{6} + \frac{1050848336567653505706262678675780051}{9823392931555084430461273614308036256} a^{5} - \frac{9684289283137369516833699739676490293}{19646785863110168860922547228616072512} a^{4} + \frac{5228948915304901803276673130338793111}{19646785863110168860922547228616072512} a^{3} + \frac{2066961421502551532143086283195382123}{6548928621036722953640849076205357504} a^{2} + \frac{534161910394590311805606933370568455}{1637232155259180738410212269051339376} a + \frac{500809033514916920289877854254575787}{1786071442100924441902049748056006592}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 382451.294806 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.36125.1, 5.1.903125.1 x5, 10.2.4078173828125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.903125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |