Normalized defining polynomial
\( x^{20} + 28 x^{18} + 882 x^{16} + 13720 x^{14} + 220892 x^{12} + 2689120 x^{10} + 41412448 x^{8} + 289887136 x^{6} + 3043814928 x^{4} + 28408939328 x^{2} + 99431287648 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23997407597237747473858076304474112=2^{55}\cdot 7^{10}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{98} a^{4}$, $\frac{1}{98} a^{5}$, $\frac{1}{686} a^{6}$, $\frac{1}{686} a^{7}$, $\frac{1}{9604} a^{8}$, $\frac{1}{9604} a^{9}$, $\frac{1}{67228} a^{10}$, $\frac{1}{67228} a^{11}$, $\frac{1}{941192} a^{12}$, $\frac{1}{941192} a^{13}$, $\frac{1}{6588344} a^{14}$, $\frac{1}{6588344} a^{15}$, $\frac{1}{92236816} a^{16}$, $\frac{1}{92236816} a^{17}$, $\frac{1}{12993435965567792} a^{18} - \frac{119677}{66293040640652} a^{16} - \frac{1251545}{16573260160163} a^{14} - \frac{854403}{9470434377236} a^{12} + \frac{203587}{676459598374} a^{10} + \frac{1633200}{48318542741} a^{8} - \frac{7047079}{13805297926} a^{6} - \frac{5489405}{1972185418} a^{4} + \frac{970885}{140870387} a^{2} + \frac{4788209}{20124341}$, $\frac{1}{12993435965567792} a^{19} - \frac{119677}{66293040640652} a^{17} - \frac{1251545}{16573260160163} a^{15} - \frac{854403}{9470434377236} a^{13} + \frac{203587}{676459598374} a^{11} + \frac{1633200}{48318542741} a^{9} - \frac{7047079}{13805297926} a^{7} - \frac{5489405}{1972185418} a^{5} + \frac{970885}{140870387} a^{3} + \frac{4788209}{20124341} a$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.1103872.6, 10.0.479756288.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.4 | $x^{10} - 99$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |