Normalized defining polynomial
\( x^{20} + 35 x^{18} + 510 x^{16} + 3990 x^{14} + 18045 x^{12} + 89635 x^{10} + 204100 x^{8} + 229600 x^{6} + 137600 x^{4} + 44800 x^{2} + 25600 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(239309216447570156250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{20} a^{12} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{40} a^{13} - \frac{1}{40} a^{11} + \frac{3}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{80} a^{14} - \frac{1}{80} a^{12} - \frac{1}{40} a^{10} - \frac{1}{8} a^{8} + \frac{1}{16} a^{6} - \frac{1}{2} a^{5} + \frac{3}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{320} a^{15} - \frac{1}{160} a^{14} - \frac{1}{320} a^{13} + \frac{1}{160} a^{12} + \frac{1}{160} a^{11} - \frac{1}{80} a^{10} + \frac{3}{32} a^{9} + \frac{1}{16} a^{8} + \frac{1}{64} a^{7} + \frac{7}{32} a^{6} + \frac{3}{64} a^{5} - \frac{11}{32} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{1280} a^{16} + \frac{3}{1280} a^{14} - \frac{1}{80} a^{13} + \frac{7}{640} a^{12} + \frac{1}{80} a^{11} - \frac{13}{640} a^{10} - \frac{1}{8} a^{9} - \frac{7}{256} a^{8} + \frac{1}{8} a^{7} + \frac{7}{256} a^{6} - \frac{1}{16} a^{5} - \frac{31}{64} a^{4} - \frac{3}{16} a^{3} - \frac{5}{16} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{2560} a^{17} + \frac{3}{2560} a^{15} - \frac{1}{160} a^{14} + \frac{7}{1280} a^{13} + \frac{1}{160} a^{12} + \frac{19}{1280} a^{11} - \frac{1}{80} a^{10} - \frac{7}{512} a^{9} + \frac{1}{16} a^{8} - \frac{121}{512} a^{7} + \frac{7}{32} a^{6} + \frac{1}{128} a^{5} + \frac{5}{32} a^{4} - \frac{9}{32} a^{3} - \frac{1}{2} a^{2} - \frac{1}{8} a$, $\frac{1}{68741074058124743680} a^{18} - \frac{16642682786684121}{68741074058124743680} a^{16} - \frac{2463371262790679}{6874107405812474368} a^{14} - \frac{1}{80} a^{13} + \frac{765171377425946623}{34370537029062371840} a^{12} + \frac{1}{80} a^{11} + \frac{321557650628786421}{68741074058124743680} a^{10} - \frac{1}{8} a^{9} + \frac{304241378129491915}{13748214811624948736} a^{8} - \frac{1}{8} a^{7} - \frac{768109728698031}{429631712863279648} a^{6} - \frac{5}{16} a^{5} - \frac{176389298220829489}{429631712863279648} a^{4} - \frac{7}{16} a^{3} - \frac{556226566383421}{1820473359590168} a^{2} - \frac{1}{4} a + \frac{24854461322788585}{53703964107909956}$, $\frac{1}{137482148116249487360} a^{19} - \frac{16642682786684121}{137482148116249487360} a^{17} - \frac{2463371262790679}{13748214811624948736} a^{15} - \frac{1}{160} a^{14} + \frac{765171377425946623}{68741074058124743680} a^{13} - \frac{3}{160} a^{12} - \frac{3115496052277450763}{137482148116249487360} a^{11} + \frac{1}{80} a^{10} + \frac{304241378129491915}{27496429623249897472} a^{9} + \frac{1}{16} a^{8} - \frac{768109728698031}{859263425726559296} a^{7} + \frac{7}{32} a^{6} - \frac{176389298220829489}{859263425726559296} a^{5} + \frac{9}{32} a^{4} - \frac{1011344906280963}{3640946719180336} a^{3} + \frac{3}{8} a^{2} - \frac{28849502785121371}{107407928215819912} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7959132231.737339 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-15}, \sqrt{33})\), 5.1.50000.1, 10.0.3037500000000.2, 10.0.2013137500000000.1, 10.2.97838482500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||