Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} + 44 x^{17} + 143 x^{16} - 1684 x^{15} + 10210 x^{14} - 22580 x^{13} + 40086 x^{12} - 760 x^{11} + 562340 x^{10} - 4464316 x^{9} + 25613303 x^{8} - 92990264 x^{7} + 280401978 x^{6} - 632767656 x^{5} + 1227776161 x^{4} - 1817494360 x^{3} + 2477103620 x^{2} - 2104862820 x + 1828090895 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23836200853411766725131665408000000000000000=2^{30}\cdot 5^{15}\cdot 31^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $147.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1240=2^{3}\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1240}(1,·)$, $\chi_{1240}(1093,·)$, $\chi_{1240}(1089,·)$, $\chi_{1240}(841,·)$, $\chi_{1240}(717,·)$, $\chi_{1240}(653,·)$, $\chi_{1240}(529,·)$, $\chi_{1240}(853,·)$, $\chi_{1240}(281,·)$, $\chi_{1240}(729,·)$, $\chi_{1240}(1117,·)$, $\chi_{1240}(481,·)$, $\chi_{1240}(357,·)$, $\chi_{1240}(721,·)$, $\chi_{1240}(157,·)$, $\chi_{1240}(373,·)$, $\chi_{1240}(969,·)$, $\chi_{1240}(249,·)$, $\chi_{1240}(1213,·)$, $\chi_{1240}(597,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{10} a^{16} - \frac{1}{5} a^{15} + \frac{1}{10} a^{12} + \frac{1}{10} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{5} + \frac{1}{10} a^{4}$, $\frac{1}{50} a^{17} + \frac{1}{50} a^{15} + \frac{1}{5} a^{14} + \frac{3}{25} a^{13} - \frac{3}{50} a^{12} + \frac{1}{50} a^{11} - \frac{4}{25} a^{10} - \frac{9}{50} a^{9} - \frac{3}{50} a^{8} - \frac{1}{2} a^{7} - \frac{3}{50} a^{6} + \frac{1}{5} a^{5} + \frac{11}{25} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{3}{10}$, $\frac{1}{4323657680095991499871450} a^{18} + \frac{1862122265869340621736}{2161828840047995749935725} a^{17} + \frac{44547993089385254108648}{2161828840047995749935725} a^{16} + \frac{518726409633866756455396}{2161828840047995749935725} a^{15} - \frac{780895377165380015128549}{4323657680095991499871450} a^{14} + \frac{47742745389727952189077}{2161828840047995749935725} a^{13} - \frac{126346935905987486491939}{864731536019198299974290} a^{12} + \frac{970993138402982965857339}{4323657680095991499871450} a^{11} + \frac{10466860211594793353606}{432365768009599149987145} a^{10} + \frac{601551262562399157373399}{4323657680095991499871450} a^{9} - \frac{643635139656099142230123}{2161828840047995749935725} a^{8} + \frac{371120241667500606561761}{2161828840047995749935725} a^{7} + \frac{570739158631211639366219}{4323657680095991499871450} a^{6} + \frac{1374751988726604285686257}{4323657680095991499871450} a^{5} - \frac{36644274604015343492968}{2161828840047995749935725} a^{4} + \frac{128923304108765415961361}{864731536019198299974290} a^{3} + \frac{47610675363146061798132}{432365768009599149987145} a^{2} + \frac{47821752943897841456633}{864731536019198299974290} a - \frac{82409303685330962122902}{432365768009599149987145}$, $\frac{1}{109576054752442892149178761346640321069856936180358050} a^{19} + \frac{2349756242721277920924230881}{21915210950488578429835752269328064213971387236071610} a^{18} + \frac{204299002783605314206277489754650526958242102427017}{109576054752442892149178761346640321069856936180358050} a^{17} + \frac{179059515589377776791213292740476869719553493612029}{21915210950488578429835752269328064213971387236071610} a^{16} - \frac{3171654251795186831565628046660131757395568145195569}{54788027376221446074589380673320160534928468090179025} a^{15} - \frac{5472677976354651613148995844045403013480713843497113}{109576054752442892149178761346640321069856936180358050} a^{14} - \frac{2682818047649349308845327816931055398501953077583109}{54788027376221446074589380673320160534928468090179025} a^{13} + \frac{8218715453577845717287479936963318172869259894515729}{109576054752442892149178761346640321069856936180358050} a^{12} + \frac{9719594196031430490300575335059093310778831458884096}{54788027376221446074589380673320160534928468090179025} a^{11} + \frac{13365679803347470884079826720875634445406754437483677}{54788027376221446074589380673320160534928468090179025} a^{10} - \frac{53272702373101267322868058168172044624141318653483609}{109576054752442892149178761346640321069856936180358050} a^{9} + \frac{15286783297179695992817037704677206869473373492170377}{54788027376221446074589380673320160534928468090179025} a^{8} - \frac{6455329201549016212000552770860879238457611535551851}{21915210950488578429835752269328064213971387236071610} a^{7} - \frac{23206411178123935425753706526033788122033891657128038}{54788027376221446074589380673320160534928468090179025} a^{6} + \frac{7435677069009254955920379956420052841526501005757753}{21915210950488578429835752269328064213971387236071610} a^{5} - \frac{21528514379107142525387577815482952790390370885064529}{54788027376221446074589380673320160534928468090179025} a^{4} - \frac{1815436993048245543343002165269003784299434959835953}{21915210950488578429835752269328064213971387236071610} a^{3} + \frac{848739824529248731513156301697195993653516597303883}{4383042190097715685967150453865612842794277447214322} a^{2} + \frac{943672861618350973442031568452188618898844907932600}{2191521095048857842983575226932806421397138723607161} a + \frac{4493601439862208894115091855745594340408674045141659}{10957605475244289214917876134664032106985693618035805}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{10}\times C_{21410}$, which has order $1712800$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24173706.832424585 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.8000.2, 5.5.923521.1, 10.10.2665284492003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $31$ | 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |