/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^20 + 5*x^18 + 12*x^16 + 19*x^14 + 28*x^12 + 50*x^10 + 70*x^8 + 62*x^6 + 32*x^4 + 9*x^2 + 1, 20, 964, [0, 10], 2380891600778249012224, [2, 17, 2297], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, 1/2*a^15 - 1/2*a^14 - 1/2*a^13 - 1/2*a^9 - 1/2*a^7 - 1/2*a^6 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a - 1/2, 1/2*a^16 - 1/2*a^13 - 1/2*a^10 - 1/2*a^9 - 1/2*a^8 - 1/2*a^3 - 1/2*a^2 - 1/2, 1/2*a^17 - 1/2*a^14 - 1/2*a^11 - 1/2*a^10 - 1/2*a^9 - 1/2*a^4 - 1/2*a^3 - 1/2*a, 1/578*a^18 + 57/578*a^16 - 203/578*a^14 - 133/578*a^12 - 1/2*a^11 + 24/289*a^10 - 55/578*a^8 - 1/2*a^7 - 189/578*a^6 + 30/289*a^4 + 131/289*a^2 - 1/2*a + 25/289, 1/578*a^19 + 57/578*a^17 + 43/289*a^15 - 1/2*a^14 + 78/289*a^13 - 1/2*a^12 + 24/289*a^11 + 117/289*a^9 - 1/2*a^8 + 50/289*a^7 - 1/2*a^6 - 229/578*a^5 - 1/2*a^4 - 27/578*a^3 - 1/2*a^2 - 239/578*a - 1/2], 0, 1, [], 0, [ (160)/(289)*a^(18) + (450)/(289)*a^(16) + (466)/(289)*a^(14) + (106)/(289)*a^(12) + (455)/(289)*a^(10) + (1893)/(289)*a^(8) - (762)/(289)*a^(6) - (3983)/(289)*a^(4) - (3742)/(289)*a^(2) - (959)/(289) , a^(19) + 5*a^(17) + 12*a^(15) + 19*a^(13) + 28*a^(11) + 50*a^(9) + 70*a^(7) + 62*a^(5) + 32*a^(3) + 9*a , (1342)/(289)*a^(19) + (6267)/(289)*a^(17) + (13973)/(289)*a^(15) + (20635)/(289)*a^(13) + (30314)/(289)*a^(11) + (56529)/(289)*a^(9) + (74377)/(289)*a^(7) + (56822)/(289)*a^(5) + (22433)/(289)*a^(3) + (4098)/(289)*a , (670)/(289)*a^(19) - (1669)/(578)*a^(18) + (6153)/(578)*a^(17) - (3783)/(289)*a^(16) + (6756)/(289)*a^(15) - (8187)/(289)*a^(14) + (19745)/(578)*a^(13) - (23673)/(578)*a^(12) + (14531)/(289)*a^(11) - (17514)/(289)*a^(10) + (27308)/(289)*a^(9) - (33144)/(289)*a^(8) + (70709)/(578)*a^(7) - (84535)/(578)*a^(6) + (26328)/(289)*a^(5) - (61125)/(578)*a^(4) + (9943)/(289)*a^(3) - (22563)/(578)*a^(2) + (1421)/(289)*a - (3397)/(578) , (317)/(578)*a^(19) + (805)/(578)*a^(18) + (509)/(289)*a^(17) + (1990)/(289)*a^(16) + (626)/(289)*a^(15) + (9407)/(578)*a^(14) + (611)/(578)*a^(13) + (7302)/(289)*a^(12) + (672)/(289)*a^(11) + (10650)/(289)*a^(10) + (2409)/(289)*a^(9) + (38379)/(578)*a^(8) + (777)/(578)*a^(7) + (26667)/(289)*a^(6) - (7279)/(578)*a^(5) + (22705)/(289)*a^(4) - (7403)/(578)*a^(3) + (10374)/(289)*a^(2) - (1779)/(578)*a + (1918)/(289) , (1185)/(578)*a^(19) - (1291)/(578)*a^(18) + (5699)/(578)*a^(17) - (3125)/(289)*a^(16) + (13187)/(578)*a^(15) - (14211)/(578)*a^(14) + (10065)/(289)*a^(13) - (10530)/(289)*a^(12) + (29425)/(578)*a^(11) - (30467)/(578)*a^(10) + (26802)/(289)*a^(9) - (56733)/(578)*a^(8) + (36419)/(289)*a^(7) - (76791)/(578)*a^(6) + (30059)/(289)*a^(5) - (29193)/(289)*a^(4) + (25805)/(578)*a^(3) - (10749)/(289)*a^(2) + (4629)/(578)*a - (2993)/(578) , (615)/(578)*a^(19) - (543)/(578)*a^(18) + (3265)/(578)*a^(17) - (2051)/(578)*a^(16) + (8095)/(578)*a^(15) - (3637)/(578)*a^(14) + (12997)/(578)*a^(13) - (2183)/(289)*a^(12) + (18827)/(578)*a^(11) - (3495)/(289)*a^(10) + (33223)/(578)*a^(9) - (7465)/(289)*a^(8) + (24103)/(289)*a^(7) - (14129)/(578)*a^(6) + (21629)/(289)*a^(5) - (2418)/(289)*a^(4) + (10916)/(289)*a^(3) + (789)/(578)*a^(2) + (4451)/(578)*a + (8)/(289) , (615)/(578)*a^(19) + (543)/(578)*a^(18) + (3265)/(578)*a^(17) + (2051)/(578)*a^(16) + (8095)/(578)*a^(15) + (3637)/(578)*a^(14) + (12997)/(578)*a^(13) + (2183)/(289)*a^(12) + (18827)/(578)*a^(11) + (3495)/(289)*a^(10) + (33223)/(578)*a^(9) + (7465)/(289)*a^(8) + (24103)/(289)*a^(7) + (14129)/(578)*a^(6) + (21629)/(289)*a^(5) + (2418)/(289)*a^(4) + (10916)/(289)*a^(3) - (789)/(578)*a^(2) + (4451)/(578)*a - (8)/(289) , (1657)/(578)*a^(19) - (33)/(17)*a^(18) + (7171)/(578)*a^(17) - (147)/(17)*a^(16) + (7382)/(289)*a^(15) - (627)/(34)*a^(14) + (10178)/(289)*a^(13) - (895)/(34)*a^(12) + (15203)/(289)*a^(11) - (666)/(17)*a^(10) + (29717)/(289)*a^(9) - (2541)/(34)*a^(8) + (35743)/(289)*a^(7) - (3183)/(34)*a^(6) + (45377)/(578)*a^(5) - (2243)/(34)*a^(4) + (12483)/(578)*a^(3) - (785)/(34)*a^(2) + (1063)/(578)*a - (121)/(34) ], 176.861949817, [[x^5 - x^4 + x^3 - x^2 - 1, 1], [x^10 - x^9 - 4*x^7 + 3*x^6 - x^5 + 7*x^4 - 2*x^3 + x^2 - 4*x - 1, 1]]]