Normalized defining polynomial
\( x^{20} - 2 x^{17} + 51 x^{16} - 8 x^{15} + 2 x^{14} - 62 x^{13} + 411 x^{12} - 182 x^{11} + 54 x^{10} - 150 x^{9} + 652 x^{8} - 330 x^{7} + 102 x^{6} - 124 x^{5} + 197 x^{4} - 132 x^{3} + 50 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2376038017203857413535432704=2^{30}\cdot 38569^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 38569$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{528775004165597208503} a^{19} - \frac{100039733464952041615}{528775004165597208503} a^{18} - \frac{261516655798890729877}{528775004165597208503} a^{17} - \frac{773983681308783910}{528775004165597208503} a^{16} + \frac{53373038632503929982}{528775004165597208503} a^{15} + \frac{216313679376519159431}{528775004165597208503} a^{14} + \frac{53086023854255865309}{528775004165597208503} a^{13} + \frac{171564166303696987388}{528775004165597208503} a^{12} + \frac{157874924476531773338}{528775004165597208503} a^{11} - \frac{165094087223348456148}{528775004165597208503} a^{10} + \frac{169017419050675412049}{528775004165597208503} a^{9} + \frac{35910474181721294909}{528775004165597208503} a^{8} - \frac{239298524198307216446}{528775004165597208503} a^{7} + \frac{2144576494504377733}{528775004165597208503} a^{6} - \frac{261479824632136117299}{528775004165597208503} a^{5} - \frac{141311803785371748715}{528775004165597208503} a^{4} + \frac{80181851617636570980}{528775004165597208503} a^{3} + \frac{28739848136638323746}{528775004165597208503} a^{2} - \frac{78139359976593654957}{528775004165597208503} a + \frac{170918509132450229025}{528775004165597208503}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{253674170514925972148}{528775004165597208503} a^{19} + \frac{52542436516689621666}{528775004165597208503} a^{18} + \frac{18753273834318634080}{528775004165597208503} a^{17} - \frac{500364504880230745008}{528775004165597208503} a^{16} + \frac{12834302413375623670998}{528775004165597208503} a^{15} + \frac{614432521127988492913}{528775004165597208503} a^{14} + \frac{1030373414196219590801}{528775004165597208503} a^{13} - \frac{15420247827636877721447}{528775004165597208503} a^{12} + \frac{101083197269610258646448}{528775004165597208503} a^{11} - \frac{25654671351925011540596}{528775004165597208503} a^{10} + \frac{11447257858588476336666}{528775004165597208503} a^{9} - \frac{35868565992552923027873}{528775004165597208503} a^{8} + \frac{157985240307856513150405}{528775004165597208503} a^{7} - \frac{51595181434190083474168}{528775004165597208503} a^{6} + \frac{19886461314042749747235}{528775004165597208503} a^{5} - \frac{27984409354716143770313}{528775004165597208503} a^{4} + \frac{44171447199038627482930}{528775004165597208503} a^{3} - \frac{24099380587501576424047}{528775004165597208503} a^{2} + \frac{8808546018540881018497}{528775004165597208503} a - \frac{1197905272523560994916}{528775004165597208503} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110404.412177 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n279 |
| Character table for t20n279 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.38569.1, 10.0.1523269387264.2, 10.0.1523269387264.1, 10.10.1523269387264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 38569 | Data not computed | ||||||