Normalized defining polynomial
\( x^{20} + 100 x^{18} - 20 x^{17} + 5050 x^{16} - 524 x^{15} + 157350 x^{14} - 600 x^{13} + 3104840 x^{12} - 62500 x^{11} + 41759034 x^{10} + 9872500 x^{9} + 521842005 x^{8} + 510835300 x^{7} + 6379299140 x^{6} + 7340687380 x^{5} + 43045152610 x^{4} + 37655714520 x^{3} + 171747552260 x^{2} + 55548895040 x + 309599949457 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(236957413356339200000000000000000000000000000000=2^{55}\cdot 5^{32}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $233.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2800=2^{4}\cdot 5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2800}(1,·)$, $\chi_{2800}(1861,·)$, $\chi_{2800}(2241,·)$, $\chi_{2800}(841,·)$, $\chi_{2800}(2701,·)$, $\chi_{2800}(461,·)$, $\chi_{2800}(1681,·)$, $\chi_{2800}(1301,·)$, $\chi_{2800}(281,·)$, $\chi_{2800}(2521,·)$, $\chi_{2800}(2141,·)$, $\chi_{2800}(1121,·)$, $\chi_{2800}(741,·)$, $\chi_{2800}(1961,·)$, $\chi_{2800}(1581,·)$, $\chi_{2800}(561,·)$, $\chi_{2800}(2421,·)$, $\chi_{2800}(1401,·)$, $\chi_{2800}(1021,·)$, $\chi_{2800}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{7} + \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{3}{7} a^{4} + \frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{10} + \frac{3}{7} a^{7} + \frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{2}{7}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{6} + \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{7} + \frac{1}{7} a$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{7} - \frac{3}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{15} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} + \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3} - \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{49} a^{16} + \frac{2}{49} a^{15} + \frac{1}{49} a^{14} - \frac{3}{49} a^{13} + \frac{3}{49} a^{12} - \frac{3}{49} a^{11} + \frac{2}{49} a^{10} + \frac{3}{49} a^{9} - \frac{3}{49} a^{8} + \frac{23}{49} a^{7} + \frac{11}{49} a^{6} - \frac{11}{49} a^{5} - \frac{9}{49} a^{4} - \frac{8}{49} a^{3} - \frac{6}{49} a^{2} + \frac{13}{49} a + \frac{16}{49}$, $\frac{1}{343} a^{17} - \frac{2}{343} a^{16} - \frac{1}{49} a^{15} + \frac{3}{49} a^{14} + \frac{1}{343} a^{13} - \frac{22}{343} a^{12} + \frac{2}{49} a^{11} + \frac{2}{343} a^{10} - \frac{8}{343} a^{9} - \frac{3}{49} a^{8} + \frac{108}{343} a^{7} - \frac{20}{343} a^{6} + \frac{11}{49} a^{5} - \frac{3}{49} a^{4} + \frac{68}{343} a^{3} - \frac{5}{343} a^{2} + \frac{48}{343} a - \frac{120}{343}$, $\frac{1}{2924417461233624207451298101543} a^{18} + \frac{3130298566656549010022855552}{2924417461233624207451298101543} a^{17} + \frac{12031555644275012798089614787}{2924417461233624207451298101543} a^{16} + \frac{20073835473570955521001833440}{417773923033374886778756871649} a^{15} + \frac{97389581126030477985574460266}{2924417461233624207451298101543} a^{14} - \frac{195099028568419886244284631683}{2924417461233624207451298101543} a^{13} - \frac{64985844997354922438917360590}{2924417461233624207451298101543} a^{12} + \frac{35069262224101511294401382095}{2924417461233624207451298101543} a^{11} - \frac{72352373962827967935372099888}{2924417461233624207451298101543} a^{10} + \frac{201344743421155828096994482883}{2924417461233624207451298101543} a^{9} - \frac{100045184053644654331256049423}{2924417461233624207451298101543} a^{8} + \frac{770454028181592560889894281315}{2924417461233624207451298101543} a^{7} - \frac{742114469604296741325907523641}{2924417461233624207451298101543} a^{6} + \frac{119837270508537704054043399269}{417773923033374886778756871649} a^{5} + \frac{528147520136492124998281331429}{2924417461233624207451298101543} a^{4} + \frac{1074905878259605767940519206711}{2924417461233624207451298101543} a^{3} - \frac{1420024088484474391033899454401}{2924417461233624207451298101543} a^{2} + \frac{83246909065257029698025502745}{417773923033374886778756871649} a - \frac{122986456053475106659066833283}{2924417461233624207451298101543}$, $\frac{1}{6260057065386162291159402195995159578006030570589855747851966001} a^{19} + \frac{484961395402777089309068851427409}{6260057065386162291159402195995159578006030570589855747851966001} a^{18} + \frac{7304149763802179622946291968671653410530411286144313073987834}{6260057065386162291159402195995159578006030570589855747851966001} a^{17} - \frac{62095437560198864490137087632412793207926915035457025428293972}{6260057065386162291159402195995159578006030570589855747851966001} a^{16} + \frac{229197582868714360026589981058137748866825246287647685443825320}{6260057065386162291159402195995159578006030570589855747851966001} a^{15} - \frac{79323961349580559797272167563100419139587273885563012632909309}{6260057065386162291159402195995159578006030570589855747851966001} a^{14} + \frac{433701826082726147761745997950529556404335693580232765633885089}{6260057065386162291159402195995159578006030570589855747851966001} a^{13} + \frac{50752087275843588825816523678158800857903282805267689621363274}{894293866483737470165628885142165654000861510084265106835995143} a^{12} + \frac{13807356848866686505961595682120070898369026900608400120949931}{6260057065386162291159402195995159578006030570589855747851966001} a^{11} - \frac{369148001059262193079685723925424728452999238892021545396752583}{6260057065386162291159402195995159578006030570589855747851966001} a^{10} + \frac{172780939505714665251619478258789584997518519657304156036173123}{6260057065386162291159402195995159578006030570589855747851966001} a^{9} + \frac{354039664062518619654953588046645678967972680148561398971512707}{6260057065386162291159402195995159578006030570589855747851966001} a^{8} + \frac{425861461976169017454668534168344083412728136599137515450149785}{6260057065386162291159402195995159578006030570589855747851966001} a^{7} - \frac{2985754337885861110172623471870080545697358634797925478756497482}{6260057065386162291159402195995159578006030570589855747851966001} a^{6} + \frac{135936853472880078231400800249031932076967392901751777259590814}{6260057065386162291159402195995159578006030570589855747851966001} a^{5} + \frac{1854146612042548258060723349997397898748649242527969386148469859}{6260057065386162291159402195995159578006030570589855747851966001} a^{4} + \frac{17865111801751711088500778680462128181865144152981791669187772}{127756266640533924309375555020309379142980215726323586690856449} a^{3} - \frac{519232540817554114491109297725715058071793888278581314925977337}{6260057065386162291159402195995159578006030570589855747851966001} a^{2} - \frac{2417961932012106452105076391420412366199809705700265256635030072}{6260057065386162291159402195995159578006030570589855747851966001} a + \frac{3056351190287808431610837589083332903824295199195876865004355269}{6260057065386162291159402195995159578006030570589855747851966001}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{270962}$, which has order $138732544$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42294001.73672045 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.100352.5, 5.5.390625.1, 10.10.5000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | R | $20$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |