Properties

Label 20.0.23519779568...5877.1
Degree $20$
Signature $[0, 10]$
Discriminant $11^{16}\cdot 13^{15}$
Root discriminant $46.62$
Ramified primes $11, 13$
Class number $61$ (GRH)
Class group $[61]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![40283, -16471, 82138, 101736, -15945, -55350, 33622, 19061, 24675, 17042, 4614, 4302, 1680, 352, 189, -48, 55, 31, -9, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 9*x^18 + 31*x^17 + 55*x^16 - 48*x^15 + 189*x^14 + 352*x^13 + 1680*x^12 + 4302*x^11 + 4614*x^10 + 17042*x^9 + 24675*x^8 + 19061*x^7 + 33622*x^6 - 55350*x^5 - 15945*x^4 + 101736*x^3 + 82138*x^2 - 16471*x + 40283)
 
gp: K = bnfinit(x^20 - x^19 - 9*x^18 + 31*x^17 + 55*x^16 - 48*x^15 + 189*x^14 + 352*x^13 + 1680*x^12 + 4302*x^11 + 4614*x^10 + 17042*x^9 + 24675*x^8 + 19061*x^7 + 33622*x^6 - 55350*x^5 - 15945*x^4 + 101736*x^3 + 82138*x^2 - 16471*x + 40283, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - 9 x^{18} + 31 x^{17} + 55 x^{16} - 48 x^{15} + 189 x^{14} + 352 x^{13} + 1680 x^{12} + 4302 x^{11} + 4614 x^{10} + 17042 x^{9} + 24675 x^{8} + 19061 x^{7} + 33622 x^{6} - 55350 x^{5} - 15945 x^{4} + 101736 x^{3} + 82138 x^{2} - 16471 x + 40283 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2351977956823175708448011472615877=11^{16}\cdot 13^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $46.62$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(143=11\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{143}(64,·)$, $\chi_{143}(1,·)$, $\chi_{143}(5,·)$, $\chi_{143}(70,·)$, $\chi_{143}(135,·)$, $\chi_{143}(12,·)$, $\chi_{143}(14,·)$, $\chi_{143}(86,·)$, $\chi_{143}(25,·)$, $\chi_{143}(27,·)$, $\chi_{143}(92,·)$, $\chi_{143}(31,·)$, $\chi_{143}(34,·)$, $\chi_{143}(38,·)$, $\chi_{143}(103,·)$, $\chi_{143}(47,·)$, $\chi_{143}(53,·)$, $\chi_{143}(122,·)$, $\chi_{143}(60,·)$, $\chi_{143}(125,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{1002552909232732911876759584880629716221031866388410333} a^{19} + \frac{13322468613009091424986291199443448538033041576481547}{334184303077577637292253194960209905407010622129470111} a^{18} + \frac{100367416746831160734708785725084141084484061717365446}{1002552909232732911876759584880629716221031866388410333} a^{17} - \frac{6887487268967052784399285571338552805765967138994746}{334184303077577637292253194960209905407010622129470111} a^{16} + \frac{51755272969180980571439087646114829029830396178310730}{334184303077577637292253194960209905407010622129470111} a^{15} - \frac{14209687856415122232857842505287132396567787698591129}{334184303077577637292253194960209905407010622129470111} a^{14} + \frac{312864643001654378912317626704563760863426671187864205}{1002552909232732911876759584880629716221031866388410333} a^{13} - \frac{61084222438149699733877602742405346393610567601123201}{334184303077577637292253194960209905407010622129470111} a^{12} - \frac{440486565097841447558041070371950277643183442686491787}{1002552909232732911876759584880629716221031866388410333} a^{11} + \frac{14884885638048560923001901904617025365845235489743052}{334184303077577637292253194960209905407010622129470111} a^{10} + \frac{173461174828237013495802562511869865191520590231158182}{1002552909232732911876759584880629716221031866388410333} a^{9} + \frac{115365782535210522934093463781545811712324428408476409}{334184303077577637292253194960209905407010622129470111} a^{8} + \frac{195691401029955052478875815641899730433829067667856525}{1002552909232732911876759584880629716221031866388410333} a^{7} - \frac{71940385383994937279447134941308584210540865466243010}{334184303077577637292253194960209905407010622129470111} a^{6} + \frac{121405721813249971216174226519753365525087393740598780}{334184303077577637292253194960209905407010622129470111} a^{5} - \frac{331849143495694748602477487853913233111324328750101878}{1002552909232732911876759584880629716221031866388410333} a^{4} + \frac{155082227053570771270413311462400629305879553300978650}{334184303077577637292253194960209905407010622129470111} a^{3} - \frac{150336049286177240065406483267365011827341337391936639}{334184303077577637292253194960209905407010622129470111} a^{2} + \frac{214298918132153023299728851434881485775393532406917238}{1002552909232732911876759584880629716221031866388410333} a - \frac{440552992461246321241642853073813072871847106051584809}{1002552909232732911876759584880629716221031866388410333}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{61}$, which has order $61$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2015201.7242 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{13}) \), 4.0.2197.1, \(\Q(\zeta_{11})^+\), 10.10.79589952003133.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ $20$ $20$ R R ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ $20$ $20$ $20$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ $20$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
13Data not computed