Properties

Label 20.0.23390974303...7681.1
Degree $20$
Signature $[0, 10]$
Discriminant $11^{18}\cdot 29^{10}$
Root discriminant $46.61$
Ramified primes $11, 29$
Class number $275$ (GRH)
Class group $[275]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![282475249, 40353607, 46118408, 12353145, 8353079, 2958032, 1615873, 653415, 324184, 139657, 66263, -19951, 6616, -1905, 673, -176, 71, -15, 8, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 8*x^18 - 15*x^17 + 71*x^16 - 176*x^15 + 673*x^14 - 1905*x^13 + 6616*x^12 - 19951*x^11 + 66263*x^10 + 139657*x^9 + 324184*x^8 + 653415*x^7 + 1615873*x^6 + 2958032*x^5 + 8353079*x^4 + 12353145*x^3 + 46118408*x^2 + 40353607*x + 282475249)
 
gp: K = bnfinit(x^20 - x^19 + 8*x^18 - 15*x^17 + 71*x^16 - 176*x^15 + 673*x^14 - 1905*x^13 + 6616*x^12 - 19951*x^11 + 66263*x^10 + 139657*x^9 + 324184*x^8 + 653415*x^7 + 1615873*x^6 + 2958032*x^5 + 8353079*x^4 + 12353145*x^3 + 46118408*x^2 + 40353607*x + 282475249, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} + 8 x^{18} - 15 x^{17} + 71 x^{16} - 176 x^{15} + 673 x^{14} - 1905 x^{13} + 6616 x^{12} - 19951 x^{11} + 66263 x^{10} + 139657 x^{9} + 324184 x^{8} + 653415 x^{7} + 1615873 x^{6} + 2958032 x^{5} + 8353079 x^{4} + 12353145 x^{3} + 46118408 x^{2} + 40353607 x + 282475249 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2339097430337203010794683455827681=11^{18}\cdot 29^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $46.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(319=11\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{319}(1,·)$, $\chi_{319}(260,·)$, $\chi_{319}(262,·)$, $\chi_{319}(202,·)$, $\chi_{319}(204,·)$, $\chi_{319}(144,·)$, $\chi_{319}(146,·)$, $\chi_{319}(86,·)$, $\chi_{319}(28,·)$, $\chi_{319}(30,·)$, $\chi_{319}(289,·)$, $\chi_{319}(291,·)$, $\chi_{319}(233,·)$, $\chi_{319}(173,·)$, $\chi_{319}(175,·)$, $\chi_{319}(115,·)$, $\chi_{319}(117,·)$, $\chi_{319}(57,·)$, $\chi_{319}(59,·)$, $\chi_{319}(318,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{463841} a^{11} - \frac{1}{7} a^{10} + \frac{1}{7} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{19951}{66263}$, $\frac{1}{3246887} a^{12} - \frac{1}{3246887} a^{11} - \frac{6}{49} a^{10} - \frac{1}{49} a^{9} + \frac{8}{49} a^{8} - \frac{15}{49} a^{7} + \frac{22}{49} a^{6} + \frac{20}{49} a^{5} - \frac{13}{49} a^{4} + \frac{6}{49} a^{3} + \frac{1}{49} a^{2} + \frac{19951}{463841} a + \frac{6616}{66263}$, $\frac{1}{22728209} a^{13} - \frac{1}{22728209} a^{12} + \frac{8}{22728209} a^{11} + \frac{48}{343} a^{10} - \frac{90}{343} a^{9} + \frac{83}{343} a^{8} - \frac{27}{343} a^{7} - \frac{78}{343} a^{6} - \frac{111}{343} a^{5} - \frac{92}{343} a^{4} + \frac{1}{343} a^{3} + \frac{19951}{3246887} a^{2} + \frac{6616}{463841} a + \frac{1905}{66263}$, $\frac{1}{159097463} a^{14} - \frac{1}{159097463} a^{13} + \frac{8}{159097463} a^{12} - \frac{15}{159097463} a^{11} - \frac{433}{2401} a^{10} + \frac{769}{2401} a^{9} + \frac{1002}{2401} a^{8} - \frac{421}{2401} a^{7} + \frac{232}{2401} a^{6} - \frac{778}{2401} a^{5} + \frac{1}{2401} a^{4} + \frac{19951}{22728209} a^{3} + \frac{6616}{3246887} a^{2} + \frac{1905}{463841} a + \frac{673}{66263}$, $\frac{1}{1113682241} a^{15} - \frac{1}{1113682241} a^{14} + \frac{8}{1113682241} a^{13} - \frac{15}{1113682241} a^{12} + \frac{71}{1113682241} a^{11} + \frac{3170}{16807} a^{10} - \frac{6201}{16807} a^{9} - \frac{5223}{16807} a^{8} - \frac{4570}{16807} a^{7} + \frac{1623}{16807} a^{6} + \frac{1}{16807} a^{5} + \frac{19951}{159097463} a^{4} + \frac{6616}{22728209} a^{3} + \frac{1905}{3246887} a^{2} + \frac{673}{463841} a + \frac{176}{66263}$, $\frac{1}{7795775687} a^{16} - \frac{1}{7795775687} a^{15} + \frac{8}{7795775687} a^{14} - \frac{15}{7795775687} a^{13} + \frac{71}{7795775687} a^{12} - \frac{176}{7795775687} a^{11} - \frac{56622}{117649} a^{10} - \frac{38837}{117649} a^{9} - \frac{4570}{117649} a^{8} - \frac{31991}{117649} a^{7} + \frac{1}{117649} a^{6} + \frac{19951}{1113682241} a^{5} + \frac{6616}{159097463} a^{4} + \frac{1905}{22728209} a^{3} + \frac{673}{3246887} a^{2} + \frac{176}{463841} a + \frac{71}{66263}$, $\frac{1}{54570429809} a^{17} - \frac{1}{54570429809} a^{16} + \frac{8}{54570429809} a^{15} - \frac{15}{54570429809} a^{14} + \frac{71}{54570429809} a^{13} - \frac{176}{54570429809} a^{12} + \frac{673}{54570429809} a^{11} - \frac{156486}{823543} a^{10} - \frac{239868}{823543} a^{9} - \frac{31991}{823543} a^{8} + \frac{1}{823543} a^{7} + \frac{19951}{7795775687} a^{6} + \frac{6616}{1113682241} a^{5} + \frac{1905}{159097463} a^{4} + \frac{673}{22728209} a^{3} + \frac{176}{3246887} a^{2} + \frac{71}{463841} a + \frac{15}{66263}$, $\frac{1}{381993008663} a^{18} - \frac{1}{381993008663} a^{17} + \frac{8}{381993008663} a^{16} - \frac{15}{381993008663} a^{15} + \frac{71}{381993008663} a^{14} - \frac{176}{381993008663} a^{13} + \frac{673}{381993008663} a^{12} - \frac{1905}{381993008663} a^{11} + \frac{583675}{5764801} a^{10} - \frac{1679077}{5764801} a^{9} + \frac{1}{5764801} a^{8} + \frac{19951}{54570429809} a^{7} + \frac{6616}{7795775687} a^{6} + \frac{1905}{1113682241} a^{5} + \frac{673}{159097463} a^{4} + \frac{176}{22728209} a^{3} + \frac{71}{3246887} a^{2} + \frac{15}{463841} a + \frac{8}{66263}$, $\frac{1}{2673951060641} a^{19} - \frac{1}{2673951060641} a^{18} + \frac{8}{2673951060641} a^{17} - \frac{15}{2673951060641} a^{16} + \frac{71}{2673951060641} a^{15} - \frac{176}{2673951060641} a^{14} + \frac{673}{2673951060641} a^{13} - \frac{1905}{2673951060641} a^{12} + \frac{6616}{2673951060641} a^{11} + \frac{4085724}{40353607} a^{10} + \frac{1}{40353607} a^{9} + \frac{19951}{381993008663} a^{8} + \frac{6616}{54570429809} a^{7} + \frac{1905}{7795775687} a^{6} + \frac{673}{1113682241} a^{5} + \frac{176}{159097463} a^{4} + \frac{71}{22728209} a^{3} + \frac{15}{3246887} a^{2} + \frac{8}{463841} a + \frac{1}{66263}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{275}$, which has order $275$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{71}{1113682241} a^{16} - \frac{21577935}{1113682241} a^{5} \) (order $22$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 15197121.6751 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-319}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{-11}, \sqrt{29})\), \(\Q(\zeta_{11})^+\), 10.0.48364216424306959.3, \(\Q(\zeta_{11})\), 10.10.4396746947664269.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ R ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
29Data not computed