Normalized defining polynomial
\( x^{20} - x^{19} + 111 x^{18} - 167 x^{17} + 5949 x^{16} - 11044 x^{15} + 200941 x^{14} - 406236 x^{13} + 4703832 x^{12} - 9377568 x^{11} + 78907466 x^{10} - 142439068 x^{9} + 948074777 x^{8} - 1434111949 x^{7} + 7982392620 x^{6} - 9291183528 x^{5} + 45302317311 x^{4} - 35276815488 x^{3} + 157681514772 x^{2} - 60274636071 x + 258891665341 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23389771273952384005640608592559814453125=3^{10}\cdot 5^{15}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1155=3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1155}(64,·)$, $\chi_{1155}(1,·)$, $\chi_{1155}(1028,·)$, $\chi_{1155}(841,·)$, $\chi_{1155}(587,·)$, $\chi_{1155}(526,·)$, $\chi_{1155}(1112,·)$, $\chi_{1155}(1114,·)$, $\chi_{1155}(797,·)$, $\chi_{1155}(608,·)$, $\chi_{1155}(482,·)$, $\chi_{1155}(421,·)$, $\chi_{1155}(169,·)$, $\chi_{1155}(818,·)$, $\chi_{1155}(694,·)$, $\chi_{1155}(713,·)$, $\chi_{1155}(631,·)$, $\chi_{1155}(377,·)$, $\chi_{1155}(379,·)$, $\chi_{1155}(188,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{41} a^{15} + \frac{14}{41} a^{14} + \frac{14}{41} a^{13} - \frac{16}{41} a^{12} + \frac{18}{41} a^{11} - \frac{20}{41} a^{10} - \frac{4}{41} a^{9} - \frac{19}{41} a^{8} + \frac{7}{41} a^{7} - \frac{2}{41} a^{6} + \frac{5}{41} a^{5} - \frac{17}{41} a^{4} + \frac{12}{41} a^{3} + \frac{20}{41} a^{2} + \frac{9}{41} a + \frac{6}{41}$, $\frac{1}{41} a^{16} - \frac{18}{41} a^{14} - \frac{7}{41} a^{13} - \frac{4}{41} a^{12} + \frac{15}{41} a^{11} - \frac{11}{41} a^{10} - \frac{4}{41} a^{9} - \frac{14}{41} a^{8} - \frac{18}{41} a^{7} - \frac{8}{41} a^{6} - \frac{5}{41} a^{5} + \frac{4}{41} a^{4} + \frac{16}{41} a^{3} + \frac{16}{41} a^{2} + \frac{3}{41} a - \frac{2}{41}$, $\frac{1}{41} a^{17} - \frac{1}{41} a^{14} + \frac{2}{41} a^{13} + \frac{14}{41} a^{12} - \frac{15}{41} a^{11} + \frac{5}{41} a^{10} - \frac{4}{41} a^{9} + \frac{9}{41} a^{8} - \frac{5}{41} a^{7} + \frac{12}{41} a^{5} - \frac{3}{41} a^{4} - \frac{14}{41} a^{3} - \frac{6}{41} a^{2} - \frac{4}{41} a - \frac{15}{41}$, $\frac{1}{41} a^{18} + \frac{16}{41} a^{14} - \frac{13}{41} a^{13} + \frac{10}{41} a^{12} - \frac{18}{41} a^{11} + \frac{17}{41} a^{10} + \frac{5}{41} a^{9} + \frac{17}{41} a^{8} + \frac{7}{41} a^{7} + \frac{10}{41} a^{6} + \frac{2}{41} a^{5} + \frac{10}{41} a^{4} + \frac{6}{41} a^{3} + \frac{16}{41} a^{2} - \frac{6}{41} a + \frac{6}{41}$, $\frac{1}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{19} - \frac{341222871557378117439273433516610235767362700134801342895376511600011541649933326957}{31671403019261322864468461593224589874309833708538599074727932714134122528329194795791} a^{18} + \frac{8787076499115659231629689618862314289388641470856397051551871108968356610992114702002}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{17} - \frac{5892774181420813487390880431566096425969906418257851664944093099571547189451780750619}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{16} + \frac{1032307122876941580119330023998087717178123439182424502438620447023821885562239562330}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{15} - \frac{429788033130738845836428625937093472963427625406820082774643342854222846572634355594314}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{14} - \frac{356298152580083649839500824309724826884180787031333321295316044089689173682639748928249}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{13} + \frac{407381292304958398026893248406000997447973551434371579430670342662114596329802412407091}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{12} + \frac{115279059770365098082145240376318407747138981574102808054623272962093796549224820087719}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{11} - \frac{189416185327819952472987814744821271853970302755287194873243535666053015469471894978245}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{10} + \frac{272234865878350028890439895294482184610304847984600846426324297812092215259771777133059}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{9} + \frac{374184649750799908879774884568658556735336819348380040209230525243061375647175283323291}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{8} + \frac{2254961296224618617075215752610162665320140144552773238326572172185767343212584414924}{31671403019261322864468461593224589874309833708538599074727932714134122528329194795791} a^{7} - \frac{485626042928514389704020541962852148581891182985024903796117087721336701454829702483283}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{6} + \frac{42707966270551176527284070010021527006926337081829369313827843719205587995542613413673}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{5} + \frac{167216279293230605960346892587185923513171811273848254222695275195376750224967628600699}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{4} + \frac{624108803627354596836943212017262966316695336628757122499528689854641337597903339641701}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{3} + \frac{268826580221126294881370083180881794072073210016601492461843568288247225332572073417719}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a^{2} - \frac{441224566379937967164412550952285086423312377230992563201687764662328393444921059002162}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431} a + \frac{307809085326485779050968124263758948493575966109152785719327894449607365518279830444184}{1298527523789714237443206925322208184846703182050082562063845241279499023661496986627431}$
Class group and class number
$C_{2}\times C_{1558442}$, which has order $3116884$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.5991815038 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.55125.1, \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | R | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |