Normalized defining polynomial
\( x^{20} - 5 x^{19} + 18 x^{18} - 48 x^{17} + 134 x^{16} - 233 x^{15} + 416 x^{14} - 476 x^{13} + 897 x^{12} - 786 x^{11} + 2316 x^{10} - 854 x^{9} + 4296 x^{8} - 870 x^{7} + 3820 x^{6} + 110 x^{5} + 565 x^{4} - 125 x^{3} + 50 x^{2} + 50 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23376400555202000000000000000=2^{16}\cdot 5^{15}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{8} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{9} - \frac{2}{5} a^{4}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{10} - \frac{2}{5} a^{5}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{11} - \frac{2}{5} a^{6}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{315} a^{18} - \frac{1}{63} a^{17} + \frac{23}{315} a^{16} - \frac{2}{63} a^{15} - \frac{1}{105} a^{14} - \frac{31}{315} a^{13} + \frac{23}{315} a^{12} + \frac{25}{63} a^{11} + \frac{4}{315} a^{10} + \frac{4}{45} a^{9} + \frac{131}{315} a^{8} + \frac{1}{3} a^{7} + \frac{20}{63} a^{6} + \frac{32}{105} a^{5} + \frac{11}{35} a^{4} - \frac{8}{63} a^{3} + \frac{23}{63} a^{2} - \frac{2}{63} a - \frac{1}{63}$, $\frac{1}{474575388958690193757791928825} a^{19} - \frac{651323061868921485852648}{1506588536376794265897752155} a^{18} - \frac{41453471248437904441700721662}{474575388958690193757791928825} a^{17} - \frac{1191088287159553944455218873}{22598828045651913988466282325} a^{16} + \frac{25827836699437613125250153464}{474575388958690193757791928825} a^{15} + \frac{42296830916473891779862727267}{474575388958690193757791928825} a^{14} + \frac{14618983156643726469245976127}{158191796319563397919263976275} a^{13} - \frac{7591138102740489774824388892}{158191796319563397919263976275} a^{12} - \frac{179642198155825969215657055093}{474575388958690193757791928825} a^{11} - \frac{31114725730135031796709219292}{158191796319563397919263976275} a^{10} + \frac{87286180878190522252742528431}{474575388958690193757791928825} a^{9} + \frac{75905093874292182074092214596}{474575388958690193757791928825} a^{8} - \frac{149072430364779789043135364039}{474575388958690193757791928825} a^{7} - \frac{35188159299036287853709108202}{94915077791738038751558385765} a^{6} + \frac{15605098747161455144945872454}{31638359263912679583852795255} a^{5} - \frac{5633135822961195015278096951}{13559296827391148393079769395} a^{4} + \frac{17499752299305778712524946839}{94915077791738038751558385765} a^{3} - \frac{6784126526905219690375339313}{18983015558347607750311677153} a^{2} + \frac{2936100224852116816353769184}{18983015558347607750311677153} a + \frac{2865393160510437772608878036}{18983015558347607750311677153}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{230144309751139391357564854}{18983015558347607750311677153} a^{19} + \frac{6334113817724518113515052439}{94915077791738038751558385765} a^{18} - \frac{23497341087047573885839601929}{94915077791738038751558385765} a^{17} + \frac{65085573403083792282240490739}{94915077791738038751558385765} a^{16} - \frac{59975356407172980584744764352}{31638359263912679583852795255} a^{15} + \frac{340219141716575494287320320637}{94915077791738038751558385765} a^{14} - \frac{85447490479809924291918293743}{13559296827391148393079769395} a^{13} + \frac{152304407402958375572598226063}{18983015558347607750311677153} a^{12} - \frac{1259934116340599451448043055302}{94915077791738038751558385765} a^{11} + \frac{273687676056622236270293101370}{18983015558347607750311677153} a^{10} - \frac{3016057555598533981011312117424}{94915077791738038751558385765} a^{9} + \frac{148612486071999827936517477362}{6327671852782535916770559051} a^{8} - \frac{5172344919801252215170180482476}{94915077791738038751558385765} a^{7} + \frac{375731561445800917815301256296}{10546119754637559861284265085} a^{6} - \frac{492520190262245629374373722896}{10546119754637559861284265085} a^{5} + \frac{1934725066289119780355406284549}{94915077791738038751558385765} a^{4} - \frac{42809204352191124442586037964}{18983015558347607750311677153} a^{3} + \frac{85623782500824690792555259273}{18983015558347607750311677153} a^{2} - \frac{3268351038328220634073451449}{2711859365478229678615953879} a - \frac{1620636797498167006478469004}{6327671852782535916770559051} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3323311.71225 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.3698000.1, 10.10.68376020000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $43$ | 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |