Normalized defining polynomial
\( x^{20} - x^{19} + 7 x^{18} - 9 x^{17} + 29 x^{16} - 28 x^{15} + 67 x^{14} - 66 x^{13} + 157 x^{12} - 124 x^{11} + 196 x^{10} - 63 x^{9} + 109 x^{8} - 15 x^{7} + 52 x^{6} - 8 x^{5} + 19 x^{4} - 2 x^{3} + 8 x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23108400064650909423828125=5^{15}\cdot 27517559^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 27517559$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{11621197045755809} a^{19} + \frac{5227862936360443}{11621197045755809} a^{18} + \frac{936193016224591}{11621197045755809} a^{17} + \frac{1137964186685074}{11621197045755809} a^{16} + \frac{1679709504754212}{11621197045755809} a^{15} - \frac{2317944722553866}{11621197045755809} a^{14} - \frac{3613827566560042}{11621197045755809} a^{13} + \frac{2801138704023939}{11621197045755809} a^{12} + \frac{4604014830341277}{11621197045755809} a^{11} + \frac{5537022854140037}{11621197045755809} a^{10} + \frac{3049368312068064}{11621197045755809} a^{9} - \frac{132514699271024}{11621197045755809} a^{8} + \frac{2253140937488505}{11621197045755809} a^{7} - \frac{3253293660141595}{11621197045755809} a^{6} - \frac{5313704325926755}{11621197045755809} a^{5} - \frac{311974836537642}{11621197045755809} a^{4} - \frac{3735429836988250}{11621197045755809} a^{3} - \frac{1859253110141149}{11621197045755809} a^{2} - \frac{126401018982850}{374877324056639} a + \frac{2166275284347116}{11621197045755809}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4929493966726890}{11621197045755809} a^{19} + \frac{5282563030638154}{11621197045755809} a^{18} - \frac{34437343595762837}{11621197045755809} a^{17} + \frac{46243062829156822}{11621197045755809} a^{16} - \frac{143343889090408205}{11621197045755809} a^{15} + \frac{143201692265212973}{11621197045755809} a^{14} - \frac{328093617028295407}{11621197045755809} a^{13} + \frac{332490426702114339}{11621197045755809} a^{12} - \frac{768859626327396593}{11621197045755809} a^{11} + \frac{624994301352428379}{11621197045755809} a^{10} - \frac{939107803337265894}{11621197045755809} a^{9} + \frac{296991924219718267}{11621197045755809} a^{8} - \frac{473383476082622112}{11621197045755809} a^{7} + \frac{33305454427094831}{11621197045755809} a^{6} - \frac{200830672006576389}{11621197045755809} a^{5} - \frac{14718843412783821}{11621197045755809} a^{4} - \frac{70429409585194282}{11621197045755809} a^{3} + \frac{2558190389837250}{11621197045755809} a^{2} - \frac{1096559869730011}{374877324056639} a - \frac{5176828919911720}{11621197045755809} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 92319.7736122 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 70 conjugacy class representatives for t20n654 are not computed |
| Character table for t20n654 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.8.85992371875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 27517559 | Data not computed | ||||||