Normalized defining polynomial
\( x^{20} - x^{19} - 5 x^{18} + 11 x^{17} + 19 x^{16} - 85 x^{15} - 29 x^{14} + 539 x^{13} - 365 x^{12} - 2869 x^{11} + 5059 x^{10} - 17214 x^{9} - 13140 x^{8} + 116424 x^{7} - 37584 x^{6} - 660960 x^{5} + 886464 x^{4} + 3079296 x^{3} - 8398080 x^{2} - 10077696 x + 60466176 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(230327976934347149972494554684169=11^{18}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(253=11\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{253}(1,·)$, $\chi_{253}(68,·)$, $\chi_{253}(70,·)$, $\chi_{253}(137,·)$, $\chi_{253}(139,·)$, $\chi_{253}(206,·)$, $\chi_{253}(208,·)$, $\chi_{253}(24,·)$, $\chi_{253}(91,·)$, $\chi_{253}(93,·)$, $\chi_{253}(160,·)$, $\chi_{253}(162,·)$, $\chi_{253}(229,·)$, $\chi_{253}(45,·)$, $\chi_{253}(47,·)$, $\chi_{253}(114,·)$, $\chi_{253}(116,·)$, $\chi_{253}(183,·)$, $\chi_{253}(185,·)$, $\chi_{253}(252,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{30354} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a + \frac{2190}{5059}$, $\frac{1}{182124} a^{12} - \frac{1}{182124} a^{11} + \frac{13}{36} a^{10} - \frac{7}{36} a^{9} + \frac{1}{36} a^{8} + \frac{5}{36} a^{7} - \frac{11}{36} a^{6} + \frac{17}{36} a^{5} + \frac{13}{36} a^{4} - \frac{7}{36} a^{3} + \frac{1}{36} a^{2} - \frac{2869}{30354} a - \frac{365}{5059}$, $\frac{1}{1092744} a^{13} - \frac{1}{1092744} a^{12} - \frac{5}{1092744} a^{11} - \frac{7}{216} a^{10} - \frac{71}{216} a^{9} - \frac{103}{216} a^{8} + \frac{97}{216} a^{7} + \frac{89}{216} a^{6} - \frac{23}{216} a^{5} - \frac{79}{216} a^{4} + \frac{1}{216} a^{3} - \frac{2869}{182124} a^{2} - \frac{365}{30354} a + \frac{539}{5059}$, $\frac{1}{6556464} a^{14} - \frac{1}{6556464} a^{13} - \frac{5}{6556464} a^{12} + \frac{11}{6556464} a^{11} + \frac{145}{1296} a^{10} - \frac{103}{1296} a^{9} + \frac{529}{1296} a^{8} + \frac{89}{1296} a^{7} + \frac{625}{1296} a^{6} + \frac{137}{1296} a^{5} + \frac{1}{1296} a^{4} - \frac{2869}{1092744} a^{3} - \frac{365}{182124} a^{2} + \frac{539}{30354} a - \frac{29}{5059}$, $\frac{1}{39338784} a^{15} - \frac{1}{39338784} a^{14} - \frac{5}{39338784} a^{13} + \frac{11}{39338784} a^{12} + \frac{19}{39338784} a^{11} - \frac{103}{7776} a^{10} - \frac{767}{7776} a^{9} + \frac{1385}{7776} a^{8} + \frac{3217}{7776} a^{7} - \frac{3751}{7776} a^{6} + \frac{1}{7776} a^{5} - \frac{2869}{6556464} a^{4} - \frac{365}{1092744} a^{3} + \frac{539}{182124} a^{2} - \frac{29}{30354} a - \frac{85}{5059}$, $\frac{1}{236032704} a^{16} - \frac{1}{236032704} a^{15} - \frac{5}{236032704} a^{14} + \frac{11}{236032704} a^{13} + \frac{19}{236032704} a^{12} - \frac{85}{236032704} a^{11} + \frac{7009}{46656} a^{10} - \frac{6391}{46656} a^{9} + \frac{10993}{46656} a^{8} - \frac{19303}{46656} a^{7} + \frac{1}{46656} a^{6} - \frac{2869}{39338784} a^{5} - \frac{365}{6556464} a^{4} + \frac{539}{1092744} a^{3} - \frac{29}{182124} a^{2} - \frac{85}{30354} a + \frac{19}{5059}$, $\frac{1}{1416196224} a^{17} - \frac{1}{1416196224} a^{16} - \frac{5}{1416196224} a^{15} + \frac{11}{1416196224} a^{14} + \frac{19}{1416196224} a^{13} - \frac{85}{1416196224} a^{12} - \frac{29}{1416196224} a^{11} + \frac{133577}{279936} a^{10} + \frac{104305}{279936} a^{9} - \frac{65959}{279936} a^{8} + \frac{1}{279936} a^{7} - \frac{2869}{236032704} a^{6} - \frac{365}{39338784} a^{5} + \frac{539}{6556464} a^{4} - \frac{29}{1092744} a^{3} - \frac{85}{182124} a^{2} + \frac{19}{30354} a + \frac{11}{5059}$, $\frac{1}{8497177344} a^{18} - \frac{1}{8497177344} a^{17} - \frac{5}{8497177344} a^{16} + \frac{11}{8497177344} a^{15} + \frac{19}{8497177344} a^{14} - \frac{85}{8497177344} a^{13} - \frac{29}{8497177344} a^{12} + \frac{539}{8497177344} a^{11} - \frac{175631}{1679616} a^{10} - \frac{625831}{1679616} a^{9} + \frac{1}{1679616} a^{8} - \frac{2869}{1416196224} a^{7} - \frac{365}{236032704} a^{6} + \frac{539}{39338784} a^{5} - \frac{29}{6556464} a^{4} - \frac{85}{1092744} a^{3} + \frac{19}{182124} a^{2} + \frac{11}{30354} a - \frac{5}{5059}$, $\frac{1}{50983064064} a^{19} - \frac{1}{50983064064} a^{18} - \frac{5}{50983064064} a^{17} + \frac{11}{50983064064} a^{16} + \frac{19}{50983064064} a^{15} - \frac{85}{50983064064} a^{14} - \frac{29}{50983064064} a^{13} + \frac{539}{50983064064} a^{12} - \frac{365}{50983064064} a^{11} + \frac{1053785}{10077696} a^{10} + \frac{1}{10077696} a^{9} - \frac{2869}{8497177344} a^{8} - \frac{365}{1416196224} a^{7} + \frac{539}{236032704} a^{6} - \frac{29}{39338784} a^{5} - \frac{85}{6556464} a^{4} + \frac{19}{1092744} a^{3} + \frac{11}{182124} a^{2} - \frac{5}{30354} a - \frac{1}{5059}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{85}{236032704} a^{17} + \frac{1609901}{236032704} a^{6} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13106437.7678 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{253}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{-23})\), \(\Q(\zeta_{11})^+\), 10.0.1379687283212183.1, 10.10.15176560115334013.1, \(\Q(\zeta_{11})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |