Normalized defining polynomial
\( x^{20} - 10 x^{19} + 52 x^{18} - 174 x^{17} + 419 x^{16} - 758 x^{15} + 1008 x^{14} - 858 x^{13} + 97 x^{12} + 1088 x^{11} - 1977 x^{10} + 1752 x^{9} - 383 x^{8} - 1068 x^{7} + 1470 x^{6} - 744 x^{5} - 122 x^{4} + 220 x^{3} + 73 x^{2} + 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2302725561923832607497256960=2^{20}\cdot 5\cdot 61^{4}\cdot 397^{4}\cdot 1277\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 397, 1277$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{181787683781648284981661} a^{19} - \frac{36240479985433722396247}{181787683781648284981661} a^{18} + \frac{76148573083619792196948}{181787683781648284981661} a^{17} - \frac{44957773212727977634259}{181787683781648284981661} a^{16} + \frac{48112782675713563543372}{181787683781648284981661} a^{15} + \frac{87536928955639856660019}{181787683781648284981661} a^{14} - \frac{22022629445555476229094}{181787683781648284981661} a^{13} + \frac{88601129474153466922684}{181787683781648284981661} a^{12} - \frac{28342015946188404748195}{181787683781648284981661} a^{11} + \frac{24521571945059330819691}{181787683781648284981661} a^{10} + \frac{84196295100667532483848}{181787683781648284981661} a^{9} + \frac{52782422034067337281679}{181787683781648284981661} a^{8} + \frac{54242974516338898436319}{181787683781648284981661} a^{7} - \frac{18265377128713461509706}{181787683781648284981661} a^{6} - \frac{31438350978154506203109}{181787683781648284981661} a^{5} + \frac{74745567120665132278997}{181787683781648284981661} a^{4} - \frac{82113662561041243099993}{181787683781648284981661} a^{3} - \frac{87988134419282423032223}{181787683781648284981661} a^{2} - \frac{88072845568064768259181}{181787683781648284981661} a + \frac{59517280023082720584372}{181787683781648284981661}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{418154033652475}{1498264024696429} a^{19} - \frac{4248841060403626}{1498264024696429} a^{18} + \frac{22428841746737886}{1498264024696429} a^{17} - \frac{76385711766326228}{1498264024696429} a^{16} + \frac{187626650151798306}{1498264024696429} a^{15} - \frac{347710144169682657}{1498264024696429} a^{14} + \frac{479099625393174489}{1498264024696429} a^{13} - \frac{439394622176230613}{1498264024696429} a^{12} + \frac{116948754673569486}{1498264024696429} a^{11} + \frac{429659638441921428}{1498264024696429} a^{10} - \frac{891932646224064096}{1498264024696429} a^{9} + \frac{878687748811053781}{1498264024696429} a^{8} - \frac{311727184922956842}{1498264024696429} a^{7} - \frac{382725296817308771}{1498264024696429} a^{6} + \frac{667542644259897201}{1498264024696429} a^{5} - \frac{419819304160825170}{1498264024696429} a^{4} + \frac{24953463208764987}{1498264024696429} a^{3} + \frac{79877068737766636}{1498264024696429} a^{2} + \frac{21036095525368731}{1498264024696429} a + \frac{2271647223816144}{1498264024696429} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 195751.092016 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n887 are not computed |
| Character table for t20n887 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.24217.1, 10.0.600538203136.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||
| 1277 | Data not computed | ||||||