Normalized defining polynomial
\( x^{20} - 3 x^{19} + 10 x^{18} - 26 x^{17} + 59 x^{16} - 129 x^{15} + 241 x^{14} - 438 x^{13} + 729 x^{12} - 1124 x^{11} + 1669 x^{10} - 2248 x^{9} + 2916 x^{8} - 3504 x^{7} + 3856 x^{6} - 4128 x^{5} + 3776 x^{4} - 3328 x^{3} + 2560 x^{2} - 1536 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22762830184956456665916278633281=8311^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $8311$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{8} a^{9} - \frac{3}{8} a^{8} + \frac{3}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{8} a^{11} + \frac{7}{16} a^{10} - \frac{3}{16} a^{9} + \frac{3}{16} a^{8} - \frac{1}{2} a^{7} + \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{7}{16} a^{4} - \frac{3}{8} a^{3}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{16} a^{12} + \frac{7}{32} a^{11} - \frac{3}{32} a^{10} - \frac{13}{32} a^{9} - \frac{1}{4} a^{8} + \frac{1}{32} a^{7} + \frac{7}{16} a^{6} - \frac{7}{32} a^{5} + \frac{5}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{15} - \frac{1}{32} a^{13} + \frac{7}{64} a^{12} - \frac{3}{64} a^{11} + \frac{19}{64} a^{10} - \frac{1}{8} a^{9} - \frac{31}{64} a^{8} - \frac{9}{32} a^{7} - \frac{7}{64} a^{6} + \frac{5}{32} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{128} a^{17} - \frac{1}{128} a^{16} - \frac{1}{64} a^{14} + \frac{7}{128} a^{13} - \frac{3}{128} a^{12} + \frac{19}{128} a^{11} - \frac{1}{16} a^{10} + \frac{33}{128} a^{9} - \frac{9}{64} a^{8} - \frac{7}{128} a^{7} - \frac{27}{64} a^{6} + \frac{3}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{256} a^{18} - \frac{1}{256} a^{17} - \frac{1}{128} a^{15} + \frac{7}{256} a^{14} - \frac{3}{256} a^{13} + \frac{19}{256} a^{12} - \frac{1}{32} a^{11} + \frac{33}{256} a^{10} - \frac{9}{128} a^{9} - \frac{7}{256} a^{8} - \frac{27}{128} a^{7} - \frac{5}{16} a^{6} - \frac{1}{16} a^{5} + \frac{3}{16} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{49664} a^{19} - \frac{17}{49664} a^{18} - \frac{35}{12416} a^{17} - \frac{3}{24832} a^{16} - \frac{633}{49664} a^{15} + \frac{197}{49664} a^{14} - \frac{577}{49664} a^{13} - \frac{321}{12416} a^{12} + \frac{9005}{49664} a^{11} + \frac{1199}{24832} a^{10} - \frac{10563}{49664} a^{9} + \frac{6857}{24832} a^{8} - \frac{5851}{12416} a^{7} - \frac{609}{6208} a^{6} - \frac{637}{3104} a^{5} + \frac{31}{776} a^{4} + \frac{55}{388} a^{3} + \frac{87}{194} a^{2} - \frac{22}{97} a + \frac{14}{97}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10106391.1313 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_5$ (as 20T36):
| A non-solvable group of order 120 |
| The 10 conjugacy class representatives for $C_2\times A_5$ |
| Character table for $C_2\times A_5$ |
Intermediate fields
| 10.10.4771040786343841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 8311 | Data not computed | ||||||