Properties

Label 20.0.22747103603...3824.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{12}\cdot 47^{6}\cdot 61^{6}$
Root discriminant $16.51$
Ramified primes $2, 47, 61$
Class number $1$
Class group Trivial
Galois group 20T149

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -1, 1, 1, 1, -2, 0, 0, -1, 3, -1, 0, 0, -2, 1, 1, 1, -1, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - x^18 + x^17 + x^16 + x^15 - 2*x^14 - x^11 + 3*x^10 - x^9 - 2*x^6 + x^5 + x^4 + x^3 - x^2 - x + 1)
 
gp: K = bnfinit(x^20 - x^19 - x^18 + x^17 + x^16 + x^15 - 2*x^14 - x^11 + 3*x^10 - x^9 - 2*x^6 + x^5 + x^4 + x^3 - x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - x^{18} + x^{17} + x^{16} + x^{15} - 2 x^{14} - x^{11} + 3 x^{10} - x^{9} - 2 x^{6} + x^{5} + x^{4} + x^{3} - x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2274710360342158457933824=2^{12}\cdot 47^{6}\cdot 61^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.51$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 47, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8686.69122061 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T149:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for t20n149
Character table for t20n149

Intermediate fields

10.4.1508214295232.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: 6.0.45872.1, 6.4.94263393452.1
Degree 10 sibling: 10.4.1508214295232.1
Degree 12 siblings: Deg 12, Deg 12
Degree 15 siblings: Deg 15, 15.3.69184806150882304.1
Degree 20 siblings: Deg 20, Deg 20
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$47$47.4.2.1$x^{4} + 1175 x^{2} + 373321$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
47.4.0.1$x^{4} - x + 39$$1$$4$$0$$C_4$$[\ ]^{4}$
47.4.0.1$x^{4} - x + 39$$1$$4$$0$$C_4$$[\ ]^{4}$
47.8.4.1$x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$61$$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
61.3.0.1$x^{3} - x + 10$$1$$3$$0$$C_3$$[\ ]^{3}$
61.3.0.1$x^{3} - x + 10$$1$$3$$0$$C_3$$[\ ]^{3}$
61.6.3.1$x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
61.6.3.1$x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$