Normalized defining polynomial
\( x^{20} - 2 x^{19} + 16 x^{18} - 28 x^{17} + 171 x^{16} - 274 x^{15} + 844 x^{14} - 790 x^{13} + 2040 x^{12} - 1794 x^{11} + 3161 x^{10} - 1998 x^{9} + 2627 x^{8} - 1573 x^{7} + 1420 x^{6} - 526 x^{5} + 245 x^{4} - 47 x^{3} + 20 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2265542600600196424321962890625=3^{10}\cdot 5^{10}\cdot 211^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{179} a^{18} - \frac{8}{179} a^{17} + \frac{28}{179} a^{16} - \frac{87}{179} a^{15} + \frac{43}{179} a^{14} - \frac{85}{179} a^{13} - \frac{15}{179} a^{12} + \frac{33}{179} a^{11} + \frac{55}{179} a^{10} + \frac{89}{179} a^{9} - \frac{69}{179} a^{8} + \frac{45}{179} a^{7} + \frac{8}{179} a^{6} - \frac{19}{179} a^{5} - \frac{7}{179} a^{4} + \frac{21}{179} a^{3} + \frac{13}{179} a^{2} + \frac{14}{179} a + \frac{5}{179}$, $\frac{1}{2177493124667658664610827} a^{19} - \frac{2363504313826731809060}{2177493124667658664610827} a^{18} - \frac{190874666038040339089228}{2177493124667658664610827} a^{17} + \frac{199012385228443520117328}{2177493124667658664610827} a^{16} - \frac{600952372753077944273261}{2177493124667658664610827} a^{15} - \frac{917023905035553181874}{27563204109717198286213} a^{14} - \frac{132085780659592686549313}{2177493124667658664610827} a^{13} - \frac{910641016133525281975603}{2177493124667658664610827} a^{12} + \frac{327826331463166730039843}{2177493124667658664610827} a^{11} + \frac{559156467864685234252584}{2177493124667658664610827} a^{10} - \frac{547418926986445178887971}{2177493124667658664610827} a^{9} + \frac{517928168743405042077695}{2177493124667658664610827} a^{8} - \frac{902158399847573227290012}{2177493124667658664610827} a^{7} - \frac{450019235267396946367868}{2177493124667658664610827} a^{6} + \frac{686793799807171534655236}{2177493124667658664610827} a^{5} - \frac{504676735536172461751389}{2177493124667658664610827} a^{4} - \frac{757509139332009747285330}{2177493124667658664610827} a^{3} + \frac{773560521721769919786709}{2177493124667658664610827} a^{2} + \frac{39873007161090878425075}{2177493124667658664610827} a + \frac{884467571312362311632873}{2177493124667658664610827}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2898309589442693763770}{12164766059595858461513} a^{19} - \frac{5315238256937966297504}{12164766059595858461513} a^{18} + \frac{45244681359600409162699}{12164766059595858461513} a^{17} - \frac{73072451980768621659006}{12164766059595858461513} a^{16} + \frac{479417576734164484616042}{12164766059595858461513} a^{15} - \frac{8943055300991463881343}{153984380501213398247} a^{14} + \frac{2285124978576323599828412}{12164766059595858461513} a^{13} - \frac{1830954274831398638382440}{12164766059595858461513} a^{12} + \frac{5384770870595414502565379}{12164766059595858461513} a^{11} - \frac{4056762247911081075850598}{12164766059595858461513} a^{10} + \frac{7950061612415443828592718}{12164766059595858461513} a^{9} - \frac{3907801434610805837198923}{12164766059595858461513} a^{8} + \frac{6109410827582731864095628}{12164766059595858461513} a^{7} - \frac{2883553998208237372351966}{12164766059595858461513} a^{6} + \frac{2935085734585437926666882}{12164766059595858461513} a^{5} - \frac{537251106504941092198094}{12164766059595858461513} a^{4} + \frac{232705235773807887707516}{12164766059595858461513} a^{3} + \frac{87793722487717720088834}{12164766059595858461513} a^{2} + \frac{16951095734147916946298}{12164766059595858461513} a + \frac{9995551780264801958597}{12164766059595858461513} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 454775.127492 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}\times D_5$ (as 20T24):
| A solvable group of order 100 |
| The 40 conjugacy class representatives for $C_{10}\times D_5$ |
| Character table for $C_{10}\times D_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 10.10.6194123253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 211 | Data not computed | ||||||