Normalized defining polynomial
\( x^{20} - 4 x^{19} + 56 x^{18} - 194 x^{17} + 1339 x^{16} - 3824 x^{15} + 17079 x^{14} - 38016 x^{13} + 120099 x^{12} - 189042 x^{11} + 436689 x^{10} - 375706 x^{9} + 708930 x^{8} + 3896 x^{7} + 691548 x^{6} + 234744 x^{5} + 1300160 x^{4} + 110736 x^{3} - 119280 x^{2} - 7136 x + 4512 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2261205821157440153800896400780505907200=2^{20}\cdot 5^{2}\cdot 36497^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{13} - \frac{1}{8} a^{12} - \frac{1}{2} a^{11} - \frac{1}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{3}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} + \frac{3}{8} a^{11} + \frac{1}{4} a^{10} - \frac{1}{8} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{15} - \frac{1}{16} a^{14} - \frac{1}{4} a^{13} - \frac{1}{16} a^{12} + \frac{1}{4} a^{11} - \frac{1}{16} a^{10} - \frac{3}{8} a^{9} + \frac{5}{16} a^{8} - \frac{3}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{1987033821418428718915060624836816150644090267088} a^{19} - \frac{12993748658690316733741139211658053140382512827}{662344607139476239638353541612272050214696755696} a^{18} + \frac{4548597839777131914477064442817304911844436261}{124189613838651794932191289052301009415255641693} a^{17} - \frac{17653838261931400572757856927541243415035537501}{331172303569738119819176770806136025107348377848} a^{16} - \frac{47946328962249490423155784016145893817296698919}{1987033821418428718915060624836816150644090267088} a^{15} + \frac{202862624336926027270694892852178022972096455229}{1987033821418428718915060624836816150644090267088} a^{14} + \frac{186655565673469035734005107449496021075326951219}{1987033821418428718915060624836816150644090267088} a^{13} + \frac{425666115966662392496494946456412055329205015553}{1987033821418428718915060624836816150644090267088} a^{12} - \frac{681355706535132127466154275110949086890141330733}{1987033821418428718915060624836816150644090267088} a^{11} - \frac{579893788848722868151886385230322265309577893897}{1987033821418428718915060624836816150644090267088} a^{10} + \frac{592327175865432420148796301308563165485747031019}{1987033821418428718915060624836816150644090267088} a^{9} + \frac{555371279717160257193420450451197446128864249201}{1987033821418428718915060624836816150644090267088} a^{8} + \frac{119657307641874092386331084043969763904013058669}{496758455354607179728765156209204037661022566772} a^{7} - \frac{63705903545375929132999322837334587268323978055}{331172303569738119819176770806136025107348377848} a^{6} - \frac{33761213715927568754078514334399367211021623685}{82793075892434529954794192701534006276837094462} a^{5} + \frac{11149542862250482579052242666825137000722637904}{41396537946217264977397096350767003138418547231} a^{4} + \frac{5276384638896427029068539804459333352198240627}{124189613838651794932191289052301009415255641693} a^{3} - \frac{89413007225675354890116813808488965686277186051}{248379227677303589864382578104602018830511283386} a^{2} + \frac{25886285164826473888478209376011953415660960961}{124189613838651794932191289052301009415255641693} a - \frac{8460367327426351658132669413304260671351798373}{41396537946217264977397096350767003138418547231}$
Class group and class number
$C_{2}\times C_{5582}$, which has order $11164$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93083868.113 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.36497.1, 10.10.49781898993124352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 36497 | Data not computed | ||||||